像C语言这样的底层语言一般都有底层的内存管理接口,比如 malloc()和free()用于分配内存和释放内存。
而对于JavaScript来说,会在创建变量(对象,字符串等)时分配内存,并且在不再使用它们时“自动”释放内存,这个自动释放内存的过程称为垃圾回收。
因为自动垃圾回收机制的存在,让大多Javascript开发者感觉他们可以不关心内存管理,所以会在一些情况下导致内存泄漏。
内存生命周期
JS 环境中分配的内存有如下声明周期:
1.内存分配:当我们申明变量、函数、对象的时候,系统会自动为他们分配内存
2.内存使用:即读写内存,也就是使用变量、函数等
3.内存回收:使用完毕,由垃圾回收机制自动回收不再使用的内存
JS 的内存分配
为了不让程序员费心分配内存,JavaScript 在定义变量时就完成了内存分配。
var n = 123; // 给数值变量分配内存 var s = "azerty"; // 给字符串分配内存 var o = { a: 1, b: null }; // 给对象及其包含的值分配内存 // 给数组及其包含的值分配内存(就像对象一样) var a = [1, null, "abra"]; function f(a){ return a + 2; } // 给函数(可调用的对象)分配内存 // 函数表达式也能分配一个对象 someElement.addEventListener('click', function(){ someElement.style.backgroundColor = 'blue'; }, false);
有些函数调用结果是分配对象内存:
var d = new Date(); // 分配一个 Date 对象 var e = document.createElement('div'); // 分配一个 DOM 元素
有些方法分配新变量或者新对象:
var s = "azerty"; var s2 = s.substr(0, 3); // s2 是一个新的字符串 // 因为字符串是不变量, // JavaScript 可能决定不分配内存, // 只是存储了 [0-3] 的范围。 var a = ["ouais ouais", "nan nan"]; var a2 = ["generation", "nan nan"]; var a3 = a.concat(a2); // 新数组有四个元素,是 a 连接 a2 的结果
JS 的内存使用
使用值的过程实际上是对分配内存进行读取与写入的操作。
读取与写入可能是写入一个变量或者一个对象的属性值,甚至传递函数的参数。
var a = 10; // 分配内存 console.log(a); // 对内存的使用
JS 的内存回收
JS 有自动垃圾回收机制,那么这个自动垃圾回收机制的原理是什么呢?
其实很简单,就是找出那些不再继续使用的值,然后释放其占用的内存。
大多数内存管理的问题都在这个阶段。
在这里最艰难的任务是找到不再需要使用的变量。
不再需要使用的变量也就是生命周期结束的变量,是局部变量,局部变量只在函数的执行过程中存在,
当函数运行结束,没有其他引用(闭包),那么该变量会被标记回收。
全局变量的生命周期直至浏览器卸载页面才会结束,也就是说全局变量不会被当成垃圾回收。
因为自动垃圾回收机制的存在,开发人员可以不关心也不注意内存释放的有关问题,但对无用内存的释放这件事是客观存在的。
不幸的是,即使不考虑垃圾回收对性能的影响,目前最新的垃圾回收算法,也无法智能回收所有的极端情况。
接下来我们来探究一下 JS 垃圾回收的机制。
垃圾回收
引用
垃圾回收算法主要依赖于引用的概念。
在内存管理的环境中,一个对象如果有访问另一个对象的权限(隐式或者显式),叫做一个对象引用另一个对象。
例如,一个Javascript对象具有对它原型的引用(隐式引用)和对它属性的引用(显式引用)。
在这里,“对象”的概念不仅特指 JavaScript 对象,还包括函数作用域(或者全局词法作用域)。
引用计数垃圾收集
这是最初级的垃圾回收算法。
引用计数算法定义“内存不再使用”的标准很简单,就是看一个对象是否有指向它的引用。
如果没有其他对象指向它了,说明该对象已经不再需了。
var o = { a: { b:2 } }; // 两个对象被创建,一个作为另一个的属性被引用,另一个被分配给变量o // 很显然,没有一个可以被垃圾收集 var o2 = o; // o2变量是第二个对“这个对象”的引用 o = 1; // 现在,“这个对象”的原始引用o被o2替换了 var oa = o2.a; // 引用“这个对象”的a属性 // 现在,“这个对象”有两个引用了,一个是o2,一个是oa o2 = "yo"; // 最初的对象现在已经是零引用了 // 他可以被垃圾回收了 // 然而它的属性a的对象还在被oa引用,所以还不能回收 oa = null; // a属性的那个对象现在也是零引用了 // 它可以被垃圾回收了
由上面可以看出,引用计数算法是个简单有效的算法。但它却存在一个致命的问题:循环引用。
如果两个对象相互引用,尽管他们已不再使用,垃圾回收不会进行回收,导致内存泄露。
来看一个循环引用的例子:
function f(){ var o = {}; var o2 = {}; o.a = o2; // o 引用 o2 o2.a = o; // o2 引用 o 这里 return "azerty"; } f();
上面我们申明了一个函数 f ,其中包含两个相互引用的对象。
在调用函数结束后,对象 o1 和 o2 实际上已离开函数范围,因此不再需要了。
但根据引用计数的原则,他们之间的相互引用依然存在,因此这部分内存不会被回收,内存泄露不可避免了。
再来看一个实际的例子:
var div = document.createElement("div"); div.onclick = function() { console.log("click"); };
上面这种JS写法再普通不过了,创建一个DOM元素并绑定一个点击事件。
此时变量 div 有事件处理函数的引用,同时事件处理函数也有div的引用!(div变量可在函数内被访问)。
一个循序引用出现了,按上面所讲的算法,该部分内存无可避免的泄露了。
为了解决循环引用造成的问题,现代浏览器通过使用标记清除算法来实现垃圾回收。
标记清除算法