运维角度浅谈MySQL数据库优化(3)

给数据库增加缓存系统,把热数据缓存到内存中,如果内存缓存中有要请求的数据就不再去数据库中返回结果,提高读性能。缓存实现有本地缓存和分布式缓存,本地缓存是将数据缓存到本地服务器内存中或者文件中,速度快。分布式可以缓存海量数据,扩展容易,主流的分布式缓存系统有memcached、Redis,memcached性能稳定,数据缓存在内存中,速度很快,QPS可达8w左右。如果想数据持久化那就用redis,性能不低于memcached。

工作过程:

运维角度浅谈MySQL数据库优化

4.3 分库

分库是根据业务不同把相关的表切分到不同的数据库中,比如web、bbs、blog等库。如果业务量很大,还可将切分后的库做主从架构,进一步避免单个库压力过大。

4.4 分表

数据量的日剧增加,数据库中某个表有几百万条数据,导致查询和插入耗时太长,怎么能解决单表压力呢?你就该考虑是否把这个表拆分成多个小表,来减轻单个表的压力,提高处理效率,此方式称为分表。

分表技术比较麻烦,要修改程序代码里的SQL语句,还要手动去创建其他表,也可以用merge存储引擎实现分表,相对简单许多。分表后,程序是对一个总表进行操作,这个总表不存放数据,只有一些分表的关系,以及更新数据的方式,总表会根据不同的查询,将压力分到不同的小表上,因此提高并发能力和磁盘I/O性能。

分表分为垂直拆分和水平拆分:

垂直拆分:把原来的一个很多字段的表拆分多个表,解决表的宽度问题。你可以把不常用的字段单独放到一个表中,也可以把大字段独立放一个表中,或者把关联密切的字段放一个表中。

水平拆分:把原来一个表拆分成多个表,每个表的结构都一样,解决单表数据量大的问题。

4.5 分区

分区就是把一张表的数据分成多个区块,这些区块可以在一个磁盘上,也可以在不同的磁盘上,分区后,表面上还是一张表,但数据散列在多个位置,这样一来,多块硬盘同时处理不同的请求,从而提高磁盘I/O读写性能,实现比较简单。

注:增加缓存、分库、分表和分区主要由程序猿来实现。

5、数据库维护

数据库维护是运维工程师或者DBA主要工作,包括性能监控、性能分析、性能调优、数据库备份和恢复等。

5.1 性能状态关键指标

QPS,Queries Per Second:每秒查询数,一台数据库每秒能够处理的查询次数

TPS,Transactions Per Second:每秒处理事务数

通过show status查看运行状态,会有300多条状态信息记录,其中有几个值帮可以我们计算出QPS和TPS,如下:

Uptime:服务器已经运行的实际,单位秒

Questions:已经发送给数据库查询数

Com_select:查询次数,实际操作数据库的

Com_insert:插入次数

Com_delete:删除次数

Com_update:更新次数

Com_commit:事务次数

Com_rollback:回滚次数

那么,计算方法来了,基于Questions计算出QPS:

mysql> show global status like 'Questions';

mysql> show global status like 'Uptime';

QPS = Questions / Uptime

基于Com_commit和Com_rollback计算出TPS:

mysql> show global status like 'Com_commit';

mysql> show global status like 'Com_rollback';

mysql> show global status like 'Uptime';

另一计算方式:基于Com_select、Com_insert、Com_delete、Com_update计算出QPS:

mysql> show global status whereVariable_namein('com_select','com_insert','com_delete','com_update');

等待1秒再执行,获取间隔差值,第二次每个变量值减去第一次对应的变量值,就是QPS。

TPS计算方法:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/6748dee49e76edbe61eaf6c0b53c6a70.html