一、目录结构树
总体概述
代码检测工具sonar
HDBS代码优化
总结开发注意点
二、总体概述进入现在这家公司我的第一个任务就是对HDBS进行代码质量优化。HDBS可能大家不是很了解,现在给大家简单介绍下:HDBS是HadoopBaseService的简称,Hadoop有了解过大数据的朋友相信并不陌生,BaseService自然也就是基础服务的意思;所以HDBS这个服务主要是基础服务的配置,同时Hadoop则表示数据量的大。以下是我暂时了解的应用架构图方便各位理解,毕竟才来这个公司一个星期可能画的不是很完整不过总体就是这么回事:
二、代码检测工具前提描述
这篇文章侧重讲HDBS代码存在的质量问题,至于怎么用、怎么搭建sonar代码异常检测平台后续再讲。
SonarQube简介
SonarQube系统是一个代码质量检测工具,主要用于检测代码的编写质量,比如:覆盖率、是否包含空指针异常、异常是否正确处理、map的遍历优化、是否包含无用代码块占据cpu资源等。 由以下四个组件组成(https://docs.sonarqube.org/display/SONAR/Architecture+and+Integration)
一个sonarqube服务器 包含三个子进程(web服务(界面管理),搜索服务 计算引擎服务(写入数据库))
一个sonarqube数据库 配置sonarqube服务
多个sonarqube插件 位于解压目录 extensions\plugins目录
一个或者多个sonarqube scanners 用于分析特定的项目
使用SonarQube(简称SQ)工作流程
开发者使用开发工具(eclipse,ide)上传代码到SCM(源代码管理器) 系统自动同步代码到某个位置 sonarqube scanners 扫描该代码检查质量 将分析结果 将分析结果推送到SQServer 存储在SQ数据库 用户可以使用eclipse插件sonarlint来同步sonarqube服务器配置(java和js版本等)可以实时在线分析。
三、HDBS代码优化代码优化的重要性
通过sonar代码检测平台针对性地解决代码中相关问题。在大项目中代码质量尤为重要,虽然这些代码问题并不是错误,在正常的数据情况下是不会发生问题的,但是也有很多情况是数据不正常的时候;一个小小的bug可能导致成千上万的订单作废,性能的优化也很重要因为性能的优化可以使得QPS显著上升,代码问题最为严重的就可能导致整个实例挂掉(JVM异常退出)。所以代码质量的提升是重中之重。
如何优化
由于HDBS是经由不同的开发人员之手总体代码质量参差不其,虽然公司有一套开发手册但是执行起来似乎比较难;但是事实告诉我们:开发中要尽可能第按照公司开发手册,如果没有就要按照通用的开发规范进行开发,比如遵循阿里的开发规范,毕竟大公司走过的路躺过的坑还是比较多的我们要学会站在巨人的肩膀上往上爬。作为程序员开发效率其实是第一位,在实际开发中我们要学会使用工具来取得开发的最大效率,比如:这里我们采用sonar来管理代码质量问题、可以用SourceTree来管理git代码等;合理使用对应的工具可以达到开发效率的最大化,毕竟公司要的是一个能够有产出的人,如果你一天能够解决的问题而别人需要两天那么你就能得到上司的赏识。
四、总结开发注意点HDBS代码中发现的问题(部分)
异常没有正确处理。比如:直接在代码中使用e.printStackTrace代码打印异常;这是有一个问题就是:这些代码在本地启动遇到异常后是可以正常打印异常信息,但是当应用部署到Linux服务器的时候却可能不会打印,这如果在线上生产环境发生问题需要盘查的时候就尴尬了,因为你可能根本找不到异常的信息也就是说系统压根就没有记录任何异常信息。
解决方法:LOGGER.error("xx异常:{}",e)
可能发生NullPointerException。比如:前面的代码定义了 Map<Object,Object> map=null; 但后面在没有判断obj是否为null的情况下进行map.size()的操作;这也是我们需要注意的地方,这种代码逻辑一般我们是不会进行异常处理的,异常处理要遵循:能够不需要异常处理就不要用异常处理不能把异常处理当做工具来使用。这种情况下如果没判断为null就进行操作就会发生运行时异常当前线程就会意外终止。
解决方法:先判断是否为null