Hadoop运行wordcount出现异常解决(3)

public static class TokenizerMapper extends
   Mapper<Object, Text, Text, IntWritable> {
  private static final IntWritable one = new IntWritable(1);
  private Text word = new Text();

public void map(Object key, Text value,
    Mapper<Object, Text, Text, IntWritable>.Context context)
    throws IOException, InterruptedException {
   StringTokenizer itr = new StringTokenizer(value.toString());
   while (itr.hasMoreTokens()) {
    this.word.set(itr.nextToken());
    context.write(this.word, one);
   }
  }
 }

public static class IntSumReducer extends
   Reducer<Text, IntWritable, Text, IntWritable> {
  private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values,
    Reducer<Text, IntWritable, Text, IntWritable>.Context context)
    throws IOException, InterruptedException {
   int sum = 0;
   for (IntWritable val : values) {
    sum += val.get();
   }
   this.result.set(sum);
   context.write(key, this.result);
  }
 }

public static void main(String[] args) throws IOException,
   ClassNotFoundException, InterruptedException {
  Configuration conf = new Configuration(); 
  conf.set("mapred.job.tracker", "master:9001");
  conf.set("mapred.jar", "hadoop-test.jar");
  String[] ars = new String[] { "hdfs://master:9000/usr/hadoop/input",
    "hdfs://master:9000/usr/hadoop/newout1" };
  String[] otherArgs = new GenericOptionsParser(conf, ars)
    .getRemainingArgs();
  if (otherArgs.length != 2) {
   System.err.println("Usage: wordcount <in> <out>");
   System.exit(2);
  }
  Job job = new Job(conf, "wordcount");
  job.setJarByClass(WordCount.class);
  job.setMapperClass(WordCount.TokenizerMapper.class);
  job.setCombinerClass(WordCount.IntSumReducer.class);
  job.setReducerClass(WordCount.IntSumReducer.class);
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(IntWritable.class);
  FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
  System.exit(job.waitForCompletion(true) ? 0 : 1);
 }

}

最后运行成功

14/10/18 10:12:27 INFO input.FileInputFormat: Total input paths to process : 2
14/10/18 10:12:27 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/10/18 10:12:27 WARN snappy.LoadSnappy: Snappy native library not loaded
14/10/18 10:12:27 INFO mapred.JobClient: Running job: job_201410181754_0004
14/10/18 10:12:28 INFO mapred.JobClient:  map 0% reduce 0%
14/10/18 10:12:32 INFO mapred.JobClient:  map 100% reduce 0%
14/10/18 10:12:39 INFO mapred.JobClient:  map 100% reduce 33%
14/10/18 10:12:40 INFO mapred.JobClient:  map 100% reduce 100%
14/10/18 10:12:40 INFO mapred.JobClient: Job complete: job_201410181754_0004
14/10/18 10:12:40 INFO mapred.JobClient: Counters: 29
14/10/18 10:12:40 INFO mapred.JobClient:  Job Counters
14/10/18 10:12:40 INFO mapred.JobClient:    Launched reduce tasks=1
14/10/18 10:12:40 INFO mapred.JobClient:    SLOTS_MILLIS_MAPS=4614
14/10/18 10:12:40 INFO mapred.JobClient:    Total time spent by all reduces waiting after reserving slots (ms)=0
14/10/18 10:12:40 INFO mapred.JobClient:    Total time spent by all maps waiting after reserving slots (ms)=0
14/10/18 10:12:40 INFO mapred.JobClient:    Launched map tasks=2
14/10/18 10:12:40 INFO mapred.JobClient:    Data-local map tasks=2
14/10/18 10:12:40 INFO mapred.JobClient:    SLOTS_MILLIS_REDUCES=8329
14/10/18 10:12:40 INFO mapred.JobClient:  File Output Format Counters
14/10/18 10:12:40 INFO mapred.JobClient:    Bytes Written=31
14/10/18 10:12:40 INFO mapred.JobClient:  FileSystemCounters
14/10/18 10:12:40 INFO mapred.JobClient:    FILE_BYTES_READ=75
14/10/18 10:12:40 INFO mapred.JobClient:    HDFS_BYTES_READ=264
14/10/18 10:12:40 INFO mapred.JobClient:    FILE_BYTES_WRITTEN=154204
14/10/18 10:12:40 INFO mapred.JobClient:    HDFS_BYTES_WRITTEN=31
14/10/18 10:12:40 INFO mapred.JobClient:  File Input Format Counters
14/10/18 10:12:40 INFO mapred.JobClient:    Bytes Read=44
14/10/18 10:12:40 INFO mapred.JobClient:  Map-Reduce Framework
14/10/18 10:12:40 INFO mapred.JobClient:    Map output materialized bytes=81
14/10/18 10:12:40 INFO mapred.JobClient:    Map input records=2
14/10/18 10:12:40 INFO mapred.JobClient:    Reduce shuffle bytes=81
14/10/18 10:12:40 INFO mapred.JobClient:    Spilled Records=12
14/10/18 10:12:40 INFO mapred.JobClient:    Map output bytes=78
14/10/18 10:12:40 INFO mapred.JobClient:    CPU time spent (ms)=1090
14/10/18 10:12:40 INFO mapred.JobClient:    Total committed heap usage (bytes)=241246208
14/10/18 10:12:40 INFO mapred.JobClient:    Combine input records=8
14/10/18 10:12:40 INFO mapred.JobClient:    SPLIT_RAW_BYTES=220
14/10/18 10:12:40 INFO mapred.JobClient:    Reduce input records=6
14/10/18 10:12:40 INFO mapred.JobClient:    Reduce input groups=4
14/10/18 10:12:40 INFO mapred.JobClient:    Combine output records=6
14/10/18 10:12:40 INFO mapred.JobClient:    Physical memory (bytes) snapshot=311574528
14/10/18 10:12:40 INFO mapred.JobClient:    Reduce output records=4
14/10/18 10:12:40 INFO mapred.JobClient:    Virtual memory (bytes) snapshot=1034760192
14/10/18 10:12:40 INFO mapred.JobClient:    Map output records=8

Ubuntu 13.04上搭建Hadoop环境

Ubuntu 12.10 +Hadoop 1.2.1版本集群配置

Ubuntu上搭建Hadoop环境(单机模式+伪分布模式)

Ubuntu下Hadoop环境的配置

单机版搭建Hadoop环境图文教程详解

搭建Hadoop环境(在Winodws环境下用虚拟机虚拟两个Ubuntu系统进行搭建)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/6b188a5921e852252cd70c5e266f9697.html