配置 Spark
cd ~/workspace/spark-1.3.0/conf #进入spark配置目录
cp spark-env.sh.template spark-env.sh #从配置模板复制
vi spark-env.sh #添加配置内容
在spark-env.sh末尾添加以下内容(这是我的配置,你可以自行修改):
export SCALA_HOME=/home/spark/workspace/scala-2.10.4
export JAVA_HOME=/home/spark/workspace/jdk1.7.0_75
export HADOOP_HOME=/home/spark/workspace/hadoop-2.6.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
SPARK_MASTER_IP=master
SPARK_LOCAL_DIRS=/home/spark/workspace/spark-1.3.0
SPARK_DRIVER_MEMORY=1G
注:在设置Worker进程的CPU个数和内存大小,要注意机器的实际硬件条件,如果配置的超过当前Worker节点的硬件条件,Worker进程会启动失败。
vi slaves在slaves文件下填上slave主机名:
slave1
slave2
将配置好的spark-1.3.0文件夹分发给所有slaves吧
scp -r ~/workspace/spark-1.3.0 spark@slave1:~/workspace/
启动Spark
sbin/start-all.sh
验证 Spark 是否��装成功
用jps检查,在 master 上应该有以下几个进程:
$ jps
7949 Jps
7328 SecondaryNameNode
7805 Master
7137 NameNode
7475 ResourceManager
在 slave 上应该有以下几个进程:
$jps
3132 DataNode
3759 Worker
3858 Jps
3231 NodeManager
进入Spark的Web管理页面: :8080
运行示例
#本地模式两线程运行
./bin/run-example SparkPi 10 --master local[2]
#Spark Standalone 集群模式运行
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master spark://master:7077 \
lib/spark-examples-1.3.0-hadoop2.4.0.jar \
100
#Spark on YARN 集群上 yarn-cluster 模式运行
./bin/spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn-cluster \ # can also be `yarn-client`
lib/spark-examples*.jar \
10
注意 Spark on YARN 支持两种运行模式,分别为yarn-cluster和yarn-client,从广义上讲,yarn-cluster适用于生产环境;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出。
更多Spark相关教程见以下内容:
CentOS 7.0下安装并配置Spark