引用对象用蓝色标识,未引用的对象用金色标识。在标记阶段,扫描所有的对象并判断。如果系统中所有的对象都要被扫描的,那么这一步骤可能非常耗时。
步骤二:正常删除正常删除移除无引用对象,留下引用对象及指向空闲空间的指针。
内存分配器持有空闲内存的引用,这些空闲内存都链接到一个List中,当需要的时候可以分配给新的对象。
步骤二a:带压缩删除为了进一步改善性能,除了删除未引用的对象,用户也可以压缩存活的引用对象。把引用对象移动到一起,通过这种方法可以使更快速、更方便的分配新的内存。
2、为什么使用分代垃圾回收机制?在早期的JVM上,不得不在所有的对象上进行标记-压缩,这显然是非常低效。随着越来越多的对象被分配,对象列表也逐渐增大,这就导致越来越长的垃圾回收时间。然而,根据经验我们分析得到大部分对象的生命周期是非常短暂的。
下面是这些数据的一个例子,Y轴代表的是分配的字节数,X轴代表的是随着时间的推移分配的字节数。
从图中可以看到,随着时间的推移,分配后的对象遗留的越来越少。事实上,大多数对象有非常短的生命周期,从图中左边较高的值得宽度可以得出。
3、JVM各代介绍从上面对象分配行为中,我们知道据此可以增强JVM的性能。因此,堆被分解为较小的三个部分或者三个代。具体分为:年轻代、老年代、持久代。
年轻代:所有创建的新对象都是在年轻代分配堆空间,在这一代变老。当年轻代被填满的时候,这就会导致一个小收集。如果对象的死亡率很高,小回收就可以获得优化。年轻代中死亡的对象越多,回收的速度也就越快。幸存对象逐渐变老(年纪增大),最终会移动到老年代。
全局暂停事件:所有的小收集都是一个个全局暂停事件。这意味着所有的应用线程都会停止,直到收集操作完成。小回收总会导致全局暂停事件。
老年代:老年代用于存储较长生命周期的对象。典型的说来就是,为年轻代对象设置了阈值,当年轻代逐渐变老,到达这个阈值的时候,对象就会被移动到老年代。随着时间的推移,老年代也会被填满,最终导致老年代也要进行垃圾回收。这个事件叫做大收集。
大收集也是全局暂停事件。通常大收集比较慢,因为它涉及到所有的存活对象。所以,对于对相应时间要求高的应用,应该将大收集最小化。此外,对于大收集,全局暂停事件的暂停时长会受到用于老年代的垃圾回收器的影响。
持久代:持久代存储了描述应用程序类和方法的元数据,JVM运行应用程序的时候需要这些元数据。持久代由JVM在运行时基于应用程序所使用的类产生。此外,Java SE类库的类和方法可能也存储在这里。
如果JVM发现有些类不在被其他类所需要,同时其他类需要更多的空间,这时候这些类可能就会被垃圾回收。
四、垃圾回收的一般步骤从上面的介绍中我们已经理解了为什么堆被分成不同的代,下面我们就需要更精确的理解这些空间是如何进行交互的。下面的一组图片展示了JVM中垃圾回收的一般过程,从对象分配到对象逐渐变老。
1、首先,所有新生成的对象都是放在年轻代的Eden分区的,初始状态下两个Survivor分区都是空的。年轻代的目标就是尽可能快速的收集掉那些生命周期短的对象。 2、当Eden区满的的时候,小垃圾收集就会被触发。 3、当Eden分区进行清理的时候,会把引用对象移动到第一个Survivor分区,无引用的对象删除。 4、在下一个小垃圾收集的时候,在Eden分区中会发生同样的事情:无引用的对象被删除,引用对象被移动到另外一个Survivor分区(S1)。此外,从上次小垃圾收集过程中第一个Survivor分区(S0)移动过来的对象年龄增加,然后被移动到S1。当所有的幸存对象移动到S1以后,S0和Eden区都会被清理。注意到,此时的Survivor分���存储有不同年龄的对象。