java.util中对应的容器在java.util.concurrent包中基本都可以找到对应的并发容器:List和Set有对应的CopyOnWriteArrayList与CopyOnWriteArraySet,HashMap有对应的ConcurrentHashMap,但是有序的TreeMap或并没有对应的ConcurrentTreeMap。
为什么没有ConcurrentTreeMap呢?这是因为TreeMap内部使用了红黑树来实现,红黑树是一种自平衡的二叉树,当树被修改时,需要重新平衡,重新平衡操作可能会影响树的大部分节点,如果并发量非常大的情况下,这就需要在许多树节点上添加互斥锁,那并发就失去了意义。所以提供了另外一种并发下的有序map实现:ConcurrentSkipListMap。
ConcurrentSkipListMap内部使用跳表(SkipList)这种数据结构来实现,他的结构相对红黑树来说非常简单理解,实现起来也相对简单,而且在理论上它的查找、插入、删除时间复杂度都为log(n)。在并发上,ConcurrentSkipListMap采用无锁的CAS+自旋来控制。
跳表简单来说就是一个多层的链表,底层是一个普通的链表,然后逐层减少,通常通过一个简单的算法实现每一层元素是下一层的元素的二分之一,这样当搜索元素时从最顶层开始搜索,可以说是另一种形式的二分查找。
一个简单的获取跳表层数概率算法实现如下:
int random_level() {
K = 1;
while (random(0,1))
K++;
return K;
}
通过简单的0和1获取概率,1层的概率为50%,2层的概率为25%,3层的概率为12.5%,这样逐级递减。
一个三层的跳表添加元素的过程如下:
插入值为15的节点:
插入后:
维基百科中有一个添加节点的动图,这里也贴出来方便理解:
通过分析ConcurrentSkipListMap的put方法来理解跳表以及CAS自旋并发控制:
private V doPut(K key, V value, boolean onlyIfAbsent) {
Node<K,V> z; // added node
if (key == null)
throw new NullPointerException();
Comparator<? super K> cmp = comparator;
outer: for (;;) {
for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) { //查找前继节点
if (n != null) { //查找到前继节点
Object v; int c;
Node<K,V> f = n.next; //获取后继节点的后继节点
if (n != b.next) //发生竞争,两次节点获取不一致,并发导致
break;
if ((v = n.value) == null) { // 节点已经被删除
n.helpDelete(b, f);
break;
}
if (b.value == null || v == n)
break;
if ((c = cpr(cmp, key, n.key)) > 0) { //进行下一轮查找,比当前key大
b = n;
n = f;
continue;
}
if (c == 0) { //相等时直接cas修改值
if (onlyIfAbsent || n.casValue(v, value)) {
@SuppressWarnings("unchecked") V vv = (V)v;
return vv;
}
break; // restart if lost race to replace value
}
// else c < 0; fall through
}
z = new Node<K,V>(key, value, n); //9. n.key > key > b.key
if (!b.casNext(n, z)) //cas修改值
break; // restart if lost race to append to b
break outer;
}
}
int rnd = ThreadLocalRandom.nextSecondarySeed(); //获取随机数
if ((rnd & 0x80000001) == 0) { // test highest and lowest bits
int level = 1, max;
while (((rnd >>>= 1) & 1) != 0) // 获取跳表层级
++level;
Index<K,V> idx = null;
HeadIndex<K,V> h = head;
if (level <= (max = h.level)) { //如果获取的调表层级小于等于当前最大层级,则直接添加,并将它们组成一个上下的链表
for (int i = 1; i <= level; ++i)
idx = new Index<K,V>(z, idx, null);
}
else { // try to grow by one level //否则增加一层level,在这里体现为Index<K,V>数组
level = max + 1; // hold in array and later pick the one to use
@SuppressWarnings("unchecked")Index<K,V>[] idxs =
(Index<K,V>[])new Index<?,?>[level+1];
for (int i = 1; i <= level; ++i)
idxs[i] = idx = new Index<K,V>(z, idx, null);
for (;;) {
h = head;
int oldLevel = h.level;
if (level <= oldLevel) // lost race to add level
break;
HeadIndex<K,V> newh = h;
Node<K,V> oldbase = h.node;
for (int j = oldLevel+1; j <= level; ++j) //新添加的level层的具体数据
newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
if (casHead(h, newh)) {
h = newh;
idx = idxs[level = oldLevel];
break;
}
}
}
// 逐层插入数据过程
splice: for (int insertionLevel = level;;) {
int j = h.level;
for (Index<K,V> q = h, r = q.right, t = idx;;) {
if (q == null || t == null)
break splice;
if (r != null) {
Node<K,V> n = r.node;
// compare before deletion check avoids needing recheck
int c = cpr(cmp, key, n.key);
if (n.value == null) {
if (!q.unlink(r))
break;
r = q.right;
continue;
}
if (c > 0) {
q = r;
r = r.right;
continue;
}
}
if (j == insertionLevel) {
if (!q.link(r, t))
break; // restart
if (t.node.value == null) {
findNode(key);
break splice;
}
if (--insertionLevel == 0)
break splice;
}
if (--j >= insertionLevel && j < level)
t = t.down;
q = q.down;
r = q.right;
}
}
}
return null;
}
这里的插入方法很复杂,可以分为3大步来理解:第一步获取前继节点后通过CAS来插入节点;第二步对level层数进行判断,如果大于最大层数,则插入一层;第三步插入对应层的数据。整个插入过程全部通过CAS自旋的方式保证并发情况下的数据正确性。
总结