我们这里所做的是首先进行4次腐蚀(erosion),然后进行4次膨胀(dilation)。腐蚀操作将会腐蚀图像中白色像素,以此来消除小斑点,而膨胀操作将使剩余的白色像素扩张并重新增长回去。
如果小斑点在腐蚀操作中被移除,那么在膨胀操作中就不会再出现。
经过我们这一系列的腐蚀和膨胀操作,可以看到我们已经成功地移除小斑点并得到条形码区域。
图5:应用一系列的腐蚀和膨胀来移除不相关的小斑点
最后,让我们找到图像中条形码的轮廓:
36 # find the contours in the thresholded image, then sort the contours 37 # by their area, keeping only the largest one 38 (cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, 39 cv2.CHAIN_APPROX_SIMPLE) 40 c = sorted(cnts, key = cv2.contourArea, reverse = True)[0] 41 42 # compute the rotated bounding box of the largest contour 43 rect = cv2.minAreaRect(c) 44 box = np.int0(cv2.cv.BoxPoints(rect)) 45 46 # draw a bounding box arounded the detected barcode and display the 47 # image 48 cv2.drawContours(image, [box], -1, (0, 255, 0), 3) 49 cv2.imshow("Image", image) 50 cv2.waitKey(0)
38~40行:幸运的是这一部分比较容易,我们简单地找到图像中的最大轮廓,如果我们正确完成了图像处理步骤,这里应该对应于条形码区域。
43~44行:然后我们为最大轮廓确定最小边框
48~50行:最后显示检测到的条形码
正如你在下面的图片中所见,我们已经成功检测到了条形码:
图6:成功检测到示例图像中的条形码
下一部分,我们将尝试更多图像。
成功的条形码检测
要跟随这些结果,请使用文章下面的表单去下载本文的源码以及随带的图片。
一旦有了代码和图像,打开一个终端来执行下面的命令:
$ Python detect_barcode.py --image images/barcode_02.jpg
图7:使用OpenCV检测图像中的一个条形码
检测椰油瓶子上的条形码没有问题。
让我们试下另外一张图片:
$ python detect_barcode.py --image images/barcode_03.jpg
图8:使用计算机视觉检测图像中的一个条形码
我们同样能够在上面的图片中找到条形码。
关于食品的条形码检测已经足够了,书本上的条形码怎么样呢:
$ python detect_barcode.py --image images/barcode_04.jpg
图9:使用Python和OpenCV检测书本上的条形码
没问题,再次通过。
那包裹上的跟踪码呢?
$ python detect_barcode.py --image images/barcode_05.jpg
图10:使用计算机视觉和图像处理检测包裹上的条形码
我们的算法再次成功检测到条形码。
最后,我们再尝试一张图片,这个是我最爱的意大利面酱—饶氏自制伏特加酱(Rao’s Homemade Vodka Sauce):
$ python detect_barcode.py --image images/barcode_06.jpg
图11:使用Python和Opencv很容易检测条形码
我们的算法又一次检测到条形码!
总结
这篇博文中,我们回顾了使用计算机视觉技术检测图像中条形码的必要步骤,使用Python编程语言和OpenCV库实现了我们的算法。
算法概要如下:
计算x方向和y方向上的Scharr梯度幅值表示
将x-gradient减去y-gradient来显示条形码区域
模糊并二值化图像
对二值化图像应用闭运算内核
进行系列的腐蚀、膨胀
找到图像中的最大轮廓,大概便是条形码
需要注意的是,该方法做了关于图像梯度表示的假设,因此只对水平条形码有效。