InnoDB 有两块非常重要的日志,一个是undo log,另外一个是redo log,前者用来保证事务的原子性以及InnoDB的MVCC,后者用来保证事务的持久性。
和大多数关系型数据库一样,InnoDB记录了对数据文件的物理更改,并保证总是日志先行,也就是所谓的WAL,即在持久化数据文件前,保证之前的redo日志已经写到磁盘。
LSN(log sequence number) 用于记录日志序号,它是一个不断递增的 unsigned long long 类型整数。在 InnoDB 的日志系统中,LSN 无处不在,它既用于表示修改脏页时的日志序号,也用于记录checkpoint,通过LSN,可以具体的定位到其在redo log文件中的位置。
为了管理脏页,在 Buffer Pool 的每个instance上都维持了一个flush list,flush list 上的 page 按照修改这些 page 的LSN号进行排序。因此定期做redo checkpoint点时,选择的 LSN 总是所有 bp instance 的 flush list 上最老的那个page(拥有最小的LSN)。由于采用WAL的策略,每次事务提交时需要持久化 redo log 才能保证事务不丢。而延迟刷脏页则起到了合并多次修改的效果,避免频繁写数据文件造成的性能问题。
由于 InnoDB 日志组的特性已经被废弃(redo日志写多份),归档日志(InnoDB archive log)特性也在5.7被彻底移除,本文在描述相关逻辑时会忽略这些逻辑。另外限于篇幅,InnoDB崩溃恢复的逻辑将在下期讲述,本文重点阐述redo log 产生的生命周期以及MySQL 5.7的一些改进点。
本文的分析基于最新的MySQL 5.7.7-RC版本。
在MySQL的InnoDB存储引擎中count(*)函数的优化
MySQL Server 层和 InnoDB 引擎层 体系结构图
InnoDB 日志文件InnoDB的redo log可以通过参数innodb_log_files_in_group配置成多个文件,另外一个参数innodb_log_file_size表示每个文件的大小。因此总的redo log大小为innodb_log_files_in_group * innodb_log_file_size。
Redo log文件以ib_logfile[number]命名,日志目录可以通过参数innodb_log_group_home_dir控制。Redo log 以顺序的方式写入文件文件,写满时则回溯到第一个文件,进行覆盖写。(但在做redo checkpoint时,也会更新第一个日志文件的头部checkpoint标记,所以严格来讲也不算顺序写)。
在InnoDB内部,逻辑上ib_logfile被当成了一个文件,对应同一个space id。由于是使用512字节block对齐写入文件,可以很方便的根据全局维护的LSN号计算出要写入到哪一个文件以及对应的偏移量。
Redo log文件是循环写入的,在覆盖写之前,总是要保证对应的脏页已经刷到了磁盘。在非常大的负载下,Redo log可能产生的速度非常快,导致频繁的刷脏操作,进而导致性能下降,通常在未做checkpoint的日志超过文件总大小的76%之后,InnoDB 认为这可能是个不安全的点,会强制的preflush脏页,导致大量用户线程stall住。如果可预期会有这样的场景,我们建议调大redo log文件的大小。可以做一次干净的shutdown,然后修改Redo log配置,重启实例。
除了redo log文件外,InnoDB还有其他的日志文件,例如为了保证truncate操作而产生的中间日志文件,包括 truncate innodb 表以及truncate undo log tablespace,都会产生一个中间文件,来标识这些操作是成功还是失败,如果truncate没有完成,则需要在 crash recovery 时进行重做。有意思的是,根据官方worklog的描述,最初实现truncate操作的原子化时是通过增加新的redo log类型来实现的,但后来不知道为什么又改成了采用日志文件的方式,也许是考虑到低版本兼容的问题吧。
关键结构体 log_sys对象log_sys是InnoDB日志系统的中枢及核心对象,控制着日志的拷贝、写入、checkpoint等核心功能。它同时也是大写入负载场景下的热点模块,是连接InnoDB日志文件及log buffer的枢纽,对应结构体为log_t。