使用Hive的正则解析器RegexSerDe分析Nginx日志

Hadoop-2.6.0 + apache-hive-1.2.0-bin

2、使用Hive分析nginx日志,网站的访问日志部分内容为:

cat /home/hadoop/hivetestdata/nginx.txt
192.168.1.128 - - [09/Jan/2015:12:38:08 +0800] "GET /avatar/helloworld.png HTTP/1.1" 200 1521 "http://write.blog.linuxidc.net/postlist" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.131 Safari/537.36"
183.60.212.153 - - [19/Feb/2015:10:23:29 +0800] "GET /o2o/media.html?menu=3 HTTP/1.1" 200 16691 "-" "Mozilla/5.0 (compatible; baiduuSpider; +)"

这条日志里面有九列,每列之间是用空格分割的,
每列的含义分别是客户端访问IP、用户标识、用户、访问时间、请求页面、请求状态、返回文件的大小、跳转来源、浏览器UA。


我们使用Hive中的正则表达式匹配这九列:
([^ ]*) ([^ ]*) ([^ ]*) (.∗) (\".*?\") (-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\")
于此同时我们可以在Hive中指定解析文件的序列化和反序列化解析器(SerDe),并且在Hive中内置了一个org.apache.hadoop.hive.serde2.RegexSerDe正则解析器,我们可以直接使用它。

3、建表语句 
CREATE TABLE logs
(
host STRING,
identity STRING,
username STRING,
time STRING,
request STRING,
status STRING,
size STRING,
referer STRING,
agent STRING
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\".*?\") (-|[0-9]*) (-|[0-9]*) (\".*?\") (\".*?\")",
"output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s"
)
STORED AS TEXTFILE;

4、加载数据: 
load data local inpath '/home/hadoop/hivetestdata/nginx.txt' into table logs;
 
查询每小时的访问量超过100的IP地址: 
select substring(time, 2, 14) datetime ,host, count(*) as count
from logs
group by substring(time, 2, 14), host
having count > 100

sort by datetime, count;

Hive编程指南 PDF 中文高清版 

基于Hadoop集群的Hive安装

Hive内表和外表的区别

Hadoop + Hive + Map +reduce 集群安装部署

Hive本地独立模式安装

Hive学习之WordCount单词统计

Hive运行架构及配置部署

Hive 的详细介绍请点这里
Hive 的下载地址请点这里

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/8da7538ec73c22298abb95e7df98a14c.html