Hadoop 中利用 MapReduce 读写 MySQL 数据

有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv、uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些特性正是 hbase 或者 hive 目前亟待改进的地方。

推荐阅读:

使用Hadoop构建MapReduce应用

采用MapReduce与Hadoop进行大数据分析

MapReduce作业提交源码分析

Hadoop应用:剖解MapReduce 

Ubuntu下配置 Eclipse 编译、开发 Hadoop(MapReduce)源代码

好了言归正传,简单的说说背景、原理以及需要注意的地方

1、为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBInputFormat和DBOutputFormat两个类。通过DBInputFormat类把数据库表数据读入到HDFS,根据DBOutputFormat类把MapReduce产生的结果集导入到数据库表中。

2、由于0.20版本对DBInputFormat和DBOutputFormat支持不是很好,该例用了0.19版本来说明这两个类的用法。

至少在我的 0.20.203 中的 org.apache.hadoop.mapreduce.lib 下是没见到 db 包,所以本文也是以老版的 API 来为例说明的。

3、运行MapReduce时候报错:java.io.IOException: com.mysql.jdbc.Driver,一般是由于程序找不到mysql驱动包。解决方法是让每个tasktracker运行MapReduce程序时都可以找到该驱动包。

添加包有两种方式:

(1)在每个节点下的${HADOOP_HOME}/lib下添加该包。重启集群,一般是比较原始的方法。

(2)a)把包传到集群上: hadoop fs -put mysql-connector-java-5.1.0- bin.jar /hdfsPath/

b)在mr程序提交job前,添加语句:DistributedCache.addFileToClassPath(new Path(“/hdfsPath/mysql- connector-java- 5.1.0-bin.jar”), conf);

(3)虽然API用的是0.19的,但是使用0.20的API一样可用,只是会提示方法已过时而已。

4、测试数据:

CREATE TABLE `t` (
`id` int DEFAULT NULL,
`name` varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE `t2` (
`id` int DEFAULT NULL,
`name` varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

insert into t values (1,"june"),(2,"decli"),(3,"hello"),
 (4,"june"),(5,"decli"),(6,"hello"),(7,"june"),
 (8,"decli"),(9,"hello"),(10,"june"),
 (11,"june"),(12,"decli"),(13,"hello");

5、代码:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Iterator;

import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.lib.IdentityReducer;
import org.apache.hadoop.mapred.lib.db.DBConfiguration;
import org.apache.hadoop.mapred.lib.db.DBInputFormat;
import org.apache.hadoop.mapred.lib.db.DBOutputFormat;
import org.apache.hadoop.mapred.lib.db.DBWritable;

/**
 * Function: 测试 mr 与 mysql 的数据交互,此测试用例将一个表中的数据复制到另一张表中
 *     实际当中,可能只需要从 mysql 读,或者写到 mysql 中。
 * date: 2013-7-29 上午2:34:04 <br/>
 * @author june
 */
public class Mysql2Mr {
 // DROP TABLE IF EXISTS `hadoop`.`studentinfo`;
 // CREATE TABLE studentinfo (
 // id INTEGER NOT NULL PRIMARY KEY,
 // name VARCHAR(32) NOT NULL);

public static class StudentinfoRecord implements Writable, DBWritable {
  int id;
  String name;

public StudentinfoRecord() {

}

public void readFields(DataInput in) throws IOException {
   this.id = in.readInt();
   this.name = Text.readString(in);
  }

public String toString() {
   return new String(this.id + " " + this.name);
  }

@Override
  public void write(PreparedStatement stmt) throws SQLException {
   stmt.setInt(1, this.id);
   stmt.setString(2, this.name);
  }

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/8e57f0f9a972926ebb02b843fce5b2d6.html