再谈二叉树的深度

题目:输入一棵二叉树的根节点,求该树的深度。从根节点到叶子结点一次经过的结点形成树的一条路径,最长路径的长度为树的深度。根节点的深度为1。

前文:二叉树的深度 

思路:如果根节点为空,则深度为0,返回0,递归的出口,如果根节点不为空,那么深度至少为1,然后我们求他们左右子树的深度,比较左右子树深度值,返回较大的那一个,通过递归调用

#include<stdio.h>
#include "stdafx.h"

struct BinaryTreeNode
{
    int              m_nValue;
    BinaryTreeNode*  m_pLeft;
    BinaryTreeNode*  m_pRight;
};

BinaryTreeNode* CreateBinaryTreeNode(int value)
{
    BinaryTreeNode* pNode = new BinaryTreeNode();
    pNode->m_nValue = value;
    pNode->m_pLeft = NULL;
    pNode->m_pRight = NULL;
}

void ConnectTreeNodes(BinaryTreeNode* pParent, BinaryTreeNode* pLeft, BinaryTreeNode* pRight)
{
    if(pParent != NULL)
    {
        pParent->m_pLeft = pLeft;
        pParent->m_pRight = pRight;
    }
}

void PrintTreeNode(BinaryTreeNode* pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->m_nValue);
       
        if(pNode->m_pLeft != NULL)
            printf("value of its left child is: %d.\n", pNode->m_pLeft->m_nValue);
        else
            printf("left child is null.\n");
       
        if(pNode->m_pRight != NULL)
            printf("value of its right child is: %d.\n",pNode->m_pRight->m_nValue);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }
    printf("\n");
}

void PrintTree(BinaryTreeNode* pRoot)
{
    PrintTreeNode(pRoot);
   
    if(pRoot != NULL)
    {
        if(pRoot->m_pLeft != NULL)
            PrintTree(pRoot->m_pLeft);
       
        if(pRoot->m_pRight != NULL)
            PrintTree(pRoot->m_pRight);
    }
}

void DestroyTree(BinaryTreeNode* pRoot)
{
    if(pRoot != NULL)
    {
        BinaryTreeNode* pLeft = pRoot->m_pLeft;
        BinaryTreeNode* pRight = pRoot->m_pRight;
       
        delete pRoot;
        pRoot = NULL;
       
        DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

int TreeDepth(BinaryTreeNode* pRoot)
{
    if(pRoot == NULL)
        return 0;
   
    int nLeft = TreeDepth(pRoot->m_pLeft);
    int nRight = TreeDepth(pRoot->m_pRight);
   
    return (nLeft > nRight) ? (nLeft + 1) : (nRight + 1);
}

//            1
//        /      \
//        2        3
//      /\        \
//      4  5        6
//        /
//      7

int main()
{
    BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
    BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
    BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
    BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
    BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
    BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
    BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
   
    ConnectTreeNodes(pNode1, pNode2, pNode3);
    ConnectTreeNodes(pNode2, pNode4, pNode5);
    ConnectTreeNodes(pNode3, NULL,  pNode6);
    ConnectTreeNodes(pNode5, pNode7, NULL  );
   
    int result = TreeDepth(pNode1);
    printf("The depth of binarytree is %d\n", result);
   
    DestroyTree(pNode1);
    return 0;
}

再谈二叉树的深度

二叉树的常见问题及其解决程序

【递归】二叉树的先序建立及遍历

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/9a1c8df3131875562fcc6283a46022ae.html