Linux BSP 开发的基础就是和GPIO打交道, 下面总结下这几天对某家开发板的GPIO控制的知识。公司的开发板用的是 DTB 模式 ,首先,进入 dts,dtsi文件查看关于GPIO 的模块。
soc {
.
.
.
gpio0: gpio@****addr {
compatible = "**********";
reg = <0 0x****addr 0 0x50>;
interrupts = <SPI 4 IRQ_TYPE_LEVEL_HIGH>;
#gpio-cells = <2>;
gpio-controller;
gpio-ranges = <&pfc 0 0 16>;
#interrupt-cells = <2>;
interrupt-controller;
clocks = <&cpg CPG_MOD 912>;
power-domains = <*****>;
};
.
.
.
};
可以看到 GPIO 节点 挂在 SOC node 下 ,手上这块开发板 把GPIO分成了8个 bank : gpio0 - gpio7
reg =<0 地址 0 长度>
#gpio-cells =<2> 表示 要用2个cell描述一个 GPIO引脚
如 I2C中定义 : pwd-gpios = <&gpio6 7 GPIO_ACTIVE_HIGH>;
表示 bank 6 的gpio 用 2个cell 描述 :7,GPIO_ACTIVE_HIGH (7表示bank 6 下的第七个引脚一般是 GP 6_07表示 ;GPIO_ACTIVE_HIGH则为高电平有效)
gpio-controller; interrupt-controller; 表示 bank 0 下的引脚 既可以作为中断引脚 ,也可以作为 通用的GPIO引脚
gpio-ranges = <&pfc 0 0 16>; 表示 bank 0下有16个 GPIO引脚
GPIO 使用 pinctrl 方式来驱动 ,pin control subsystem 会 :
1. 枚举所有可用的pin 脚 ,于是每个引脚就有的唯一的 ID (num) ,这个ID 很关键,对于以后的操作。
enum {
PINMUX_RESERVED = 0,
PINMUX_DATA_BEGIN,
GP_ALL(DATA), /* add GP_0_1_DATA ,GP_0_1_DATA..... */
PINMUX_DATA_END,
#define F_(x, y)
.....
}
2.管理 这些Pin脚的, 由于pin 可以复用 比如 SPI 和GPIO 复用一个pin脚 如: GP2_08 / MISO,于是引申出 pin group 和 pin functon 两个概念:
i2c2_pins: i2c2 { groups = "i2c2_a"; function = "i2c2"; };
在dts 中如上所示 ,其中 i2c2_a 在 pinctl 源码中 如下所示,i2c的两根引脚使用 GP5_0 ,GP5_4.
static const unsigned int i2c2_a_pins[] = { /* SDA, SCL */ GP_PIN(5, 0),GP_PIN(5, 4), };
function 如下 :
struct sh_pfc_function {
const char *name;
const char * const *groups;
unsigned int nr_groups;
};
#define SH_PFC_FUNCTION(n = i2c2) \
{ \
.name = #n, \
.groups = n##_groups, \
.nr_groups = ARRAY_SIZE(n##_groups), \
}
好了 ,基本概念就先写这么多 。
内核层配置 GPIO在 写内核驱动的时候 如果希望配置某个GPIO引脚 , 可以在dts中 添加: pwd-gpios = <&gpio0 7 GPIO_ACTIVE_HIGH>;
在 driver 代码中 , 需要包含 #include <linux/gpio.h>使用 :
gpio_id = of_get_named_gpio(your_driver->dev->of_node,"pwd-gpios", 0);
获取 GP0_07的 ID号 ,然后申请 一个GPIO 操作对象。
if (gpio_is_valid(gpio_id)) //判断一个IO是否合法
devm_gpio_request_one(&platform_device->dev, gpio_id,GPIOF_OUT_INIT_LOW, name);