Redis缓存数据库详解(2)

实现方式:
Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。

4)Set
常用命令:
sadd,spop,smembers,sunion 等。

应用场景:
Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。

实现方式:
set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。

5)Sorted set
常用命令:
zadd,zrange,zrem,zcard等

使用场景:
Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。

实现方式:
Redis sorted set的内部使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。

----------------------------------------------------------
常用内存优化手段与参数
通过我们上面的一些实现上的分析可以看出redis实际上的内存管理成本非常高,即占用了过多的内存,作者对这点也非常清楚,所以提供了一系列的参数和手段来控制和节省内存。
1)首先最重要的一点是不要开启Redis的VM选项,即虚拟内存功能,这个本来是作为Redis存储超出物理内存数据的一种数据在内存与磁盘换入换出的一个持久化策略,但是其内存管理成本也非常的高,并且我们后续会分析此种持久化策略并不成熟,所以要关闭VM功能,请检查你的redis.conf文件中 vm-enabled 为 no。

2)其次最好设置下redis.conf中的maxmemory选项,该选项是告诉Redis当使用了多少物理内存后就开始拒绝后续的写入请求,该参数能很好的保护好你的Redis不会因为使用了过多的物理内存而导致swap,最终严重影响性能甚至崩溃。

3)另外Redis为不同数据类型分别提供了一组参数来控制内存使用,我们在前面详细分析过Redis Hash是value内部为一个HashMap,如果该Map的成员数比较少,则会采用类似一维线性的紧凑格式来存储该Map, 即省去了大量指针的内存开销,这个参数控制对应在redis.conf配置文件中下面2项:
hash-max-zipmap-entries 64
hash-max-zipmap-value 512

其中:
hash-max-zipmap-entries
含义是当value这个Map内部不超过多少个成员时会采用线性紧凑格式存储,默认是64,即value内部有64个以下的成员就是使用线性紧凑存储,超过该值自动转成真正的HashMap。

hash-max-zipmap-value 含义是当 value这个Map内部的每个成员值长度不超过多少字节就会采用线性紧凑存储来节省空间。

以上2个条件任意一个条件超过设置值都会转换成真正的HashMap,也就不会再节省内存了,那么这个值是不是设置的越大越好呢,答案当然是否定的,HashMap的优势就是查找和操作的时间复杂度都是O(1)的,而放弃Hash采用一维存储则是O(n)的时间复杂度,如果

成员数量很少,则影响不大,否则会严重影响性能,所以要权衡好这个值的设置,总体上还是最根本的时间成本和空间成本上的权衡。

同样类似的参数还有:
list-max-ziplist-entries 512说明:list数据类型多少节点以下会采用去指针的紧凑存储格式。
list-max-ziplist-value 64 说明:list数据类型节点值大小小于多少字节会采用紧凑存储格式。
set-max-intset-entries 512 说明:set数据类型内部数据如果全部是数值型,且包含多少节点以下会采用紧凑格式存储。

4)最后想说的是Redis内部实现没有对内存分配方面做过多的优化,在一定程度上会存在内存碎片,不过大多数情况下这个不会成为Redis的性能瓶颈,不过如果在Redis内部存储的大部分数据是数值型的话,Redis内部采用了一个shared integer的方式来省去分配内存的开销,即在系统启动时先分配一个从1~n 那么多个数值对象放在一个池子中,如果存储的数据恰好是这个数值范围内的数据,则直接从池子里取出该对象,并且通过引用计数的方式来共享,这样在系统存储了大量数值下,也能一定程度上节省内存并且提高性能,这个参数值n的设置需要修改源代码中的一行宏定义REDIS_SHARED_INTEGERS,该值默认是10000,可以根据自己的需要进行修改,修改后重新编译就可以了。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/a0f07f458484b98c397bb007a7bef8e7.html