Facebook的Hadoop应用与故障转移方案

  在《数据大爆炸 一分钟=60秒=海量数据》一文中,我们曾提到在短短的60秒内,Facebook的用户会分享684478条信息,Like按钮被点击34772次。庞大的业务量时刻考验着Facebook的数据处理能力。我们知道,Facebook使用Hadoop来进行大数据的处理,但Facebook又是如何保障频繁、庞大的数据请求等高压环境下不发生故障的呢?我们一起来了解一下Facebook内部的Hadoop使用情况以及其NameNode故障转移技术。

  Facebook Hadoop集群内目前的HDFS物理磁盘空间承载超过100PB的数据(分布在不同数据中心的100多个集群)。由于HDFS存储着Hadoop应用需要处理的数据,因此优化HDFS成为Facebook为用户提供高效、可靠服务至关重要的因素。

  HDFS Namenode是如何工作的?

  HDFS客户端通过被称之为Namenode单服务器节点执行文件系统原数据操作,同时DataNode会与其他DataNode进行通信并复制数据块以实现冗余,这样单一的DataNode损坏不会导致集群的数据丢失。

  但NameNode出现故障的损失确是无法容忍的。NameNode主要职责是跟踪文件如何被分割成文件块、文件块又被哪些节点存储,以及分布式文件系统的整体运行状态是否正常等。但如果NameNode节点停止运行的话将会导致数据节点无法通信,客户端无法读取和写入数据到HDFS,实际上这也将导致整个系统停止工作。

HDFS Namenode是如何工作的?


▲The HDFS Namenode is a single point of failure (SPOF)

  Facebook也深知“Namenode-as-SPOF”所带来问题的严重性,所以Facebook希望建立一套系统已破除“Namenode-as-SPOF”带来的隐患。但在了解这套系统之前,首先来看一下Facebook在使用和部署HDFS都遇到了哪些问题。

  Facebook数据仓库的使用

  在Facebook的数据仓库中部署着最大的HDFS集群,数据仓库的使用情况是传统的Hadoop MapReduce工作负载——在大型集群中一小部分运行MapReduce批处理作业

  因为集群非常庞大,客户端和众多DataNode节点与NameNode节点传输海量的原数据,这导致NameNode的负载非常沉重。而来自CPU、内存、磁盘和网络带来的压力也使得数据仓库集群中NameNode高负载状况屡见不鲜。在使用过程中Facebook发现其数据仓库中由于HDFS引发的故障占总故障率的41%。

HDFS Namenode是如何工作的?

  HDFS NameNode是HDFS中的重要组成部分,同时也是整个数据仓库中的重要组成部分。虽然高可用的NameNode只可以预防数据仓库10%的计划外停机,不过消除NameNode对于SPOF来说可谓是重大的胜利,因为这使得Facebook可执行预订的硬件和软件回复。事实上,Facebook预计如果解决NameNode可消除集群50%的计划停机时间。

  那么高可用性NameNode是什么样子的?它将如何工作?让我们来看一下高度可用性NameNode的图表。

HDFS Namenode是如何工作的?

  在此结构中,客户端可与Primary NameNode与Standby NameNode通信,同样众多DataNode

  也具备给Primary NameNode与Standby NameNode发送block reports的能力。实质上Facebook所研发的AvatarNode就是具备高可用NameNode的解决方案。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:http://www.heiqu.com/a14d69673f46e31b9e79d58f2ff17431.html