磁盘阵列可以在部分磁盘(单块或多块,根据实现而论)损坏的情况下,仍能保证系统不中断地连续运行。在重建故障磁盘数据至新磁盘的过程中,系统可以继续正常运行,但是性能方面会有一定程度上的降低。一些磁盘阵列在添加或删除磁盘时必须停机,而有些则支持热交换 ( Hot Swapping ),允许不停机下替换磁盘驱动器。这种高端磁盘阵列主要用于要求高可能性的应用系统,系统不能停机或尽可能少的停机时间。一般来说, RAID 不可作为数据备份的替代方案,它对非磁盘故障等造成的数据丢失无能为力,比如病毒、人为破坏、意外删除等情形。此时的数据丢失是相对操作系统、文件系统、卷管理器或者应用系统来说的,对于 RAID 系统来身,数据都是完好的,没有发生丢失。所以,数据备份、灾 备等数据保护措施是非常必要的,与 RAID 相辅相成,保护数据在不同层次的安全性,防止发生数据丢失。
RAID 中主要有三个关键概念和技术:镜像( Mirroring )、数据条带( Data Stripping )和数据校验( Data parity ) [3][4][5] 。镜像,将数据复制到多个磁盘,一方面可以提高可靠性,另一方面可并发从两个或多个副本读取数据来提高读性能。显而易见,镜像的写性能要稍低, 确保数据正确地写到多个磁盘需要更多的时间消耗。数据条带,将数据分片保存在多个不同的磁盘,多个数据分片共同组成一个完整数据副本,这与镜像的多个副本是不同的,它通常用于性能考虑。数据条带具有更高的并发粒度,当访问数据时,可以同时对位于不同磁盘上数据进行读写操作, 从而获得非常可观的 I/O 性能提升 。数据校验,利用冗余数据进行数据错误检测和修复,冗余数据通常采用海明码、异或操作等算法来计算获得。利用校验功能,可以很大程度上提高磁盘阵列的可靠性、鲁棒性和容错能力。不过,数据校验需要从多处读取数据并进行计算和对比,会影响系统性能。 不同等级的 RAID 采用一个或多个以上的三种技术,来获得不同的数据可靠性、可用性和 I/O 性能。至于设计何种 RAID (甚至新的等级或类型)或采用何种模式的 RAID ,需要在深入理解系统需求的前提下进行合理选择,综合评估可靠性、性能和成本来进行折中的选择。
RAID 思想从提出后就广泛被业界所接纳,存储工业界投入了大量的时间和财力来研究和开发相关产品。而且,随着处理器、内存、计算机接口等技术的不断发展, RAID 不断地发展和革新,在计算机存储领域得到了广泛的应用,从高端系统逐渐延伸到普通的中低端系统。 RAID 技术如此流行,源于其具有显著的特征和优势,基本可以满足大部分的数据存储需求。总体说来, RAID 主要优势有如下几点:
(1) 大容量
这是 RAID 的一个显然优势,它扩大了磁盘的容量,由多个磁盘组成的 RAID 系统具有海量的存储空间。现在单个磁盘的容量就可以到 1TB 以上,这样 RAID 的存储容量就可以达到 PB 级,大多数的存储需求都可以满足。一般来说, RAID 可用容量要小于所有成员磁盘的总容量。不同等级的 RAID 算法需要一定的冗余开销,具体容量开销与采用算法相关。如果已知 RAID 算法和容量,可以计算出 RAID 的可用容量。通常, RAID 容量利用率在 50% ~ 90% 之间。
(2) 高性能
RAID 的高性能受益于数据条带化技术。单个磁盘的 I/O 性能受到接口、带宽等计算机技术的限制,性能往往很有 限,容易成为系统性能的瓶颈。通过数据条带化, RAID 将数据 I/O 分散到各个成员磁盘上,从而获得比单个磁盘成倍增长的聚合 I/O 性能。
(3) 可靠性
可用性和可靠性是 RAID 的另一个重要特征。从理论上讲,由多个磁盘组成的 RAID 系统在可靠性方面应该比单个磁盘要差。这里有个隐含假定:单个磁盘故障将导致整个 RAID 不可用。 RAID 采用镜像和数据校验等数据冗余技术,打破了这个假定。 镜像是最为原始的冗余技术,把某组磁盘驱动器上的数据完全复制到另一组磁盘驱动器上,保证总有数据副本可用。 比起镜像 50% 的冗余开销 ,数据校验要小很多,它利用校验冗余信息对数据进行校验和纠错。 RAID 冗余技术大幅提升数据可用性和可靠性,保证了若干磁盘出错时,不 会导致数据的丢失,不影响系统的连续运行。
(4) 可管理性