随着Apache Hadoop的起步,云客户的增多面临的首要问题就是如何为他们新的的Hadoop集群选择合适的硬件。
尽管Hadoop被设计为运行在行业标准的硬件上,提出一个理想的集群配置不想提供硬件规格列表那么简单。 选择硬件,为给定的负载在性能和经济性提供最佳平衡是需要测试和验证其有效性。(比如,IO密集型工作负载的用户将会为每个核心主轴投资更多)。
在这个博客帖子中,你将会学到一些工作负载评估的原则和它在硬件选择中起着至关重要的作用。在这个过程中,你也将学到Hadoop管理员应该考虑到各种因素。
结合存储和计算过去的十年,IT组织已经标准化了刀片服务器和存储区域网(SAN)来满足联网和处理密集型的工作负载。尽管这个模型对于一些方面的标准程序是有相当意义 的,比如网站服务器,程序服务器,小型结构化数据库,数据移动等,但随着数据数量和用户数的增长,对于基础设施的要求也已经改变。网站服务器现在有了缓存 层;数据库需要本地硬盘支持大规模地并行;数据迁移量也超过了本地可处理的数量。
大部分的团队还没有弄清楚实际工作负载需求就开始搭建他们的Hadoop集群。硬 件提供商已经生产了创新性的产品系统来应对这些需求,包括存储刀片服务器,串行SCSI交换机,外部SATA磁盘阵列和大容量的机架单元。然 而,Hadoop是基于新的实现方法,来存储和处理复杂数据,并伴随着数据迁移的减少。 相对于依赖SAN来满足大容量存储和可靠性,Hadoop在软件层次处理大数据和可靠性。
Hadoop在一簇平衡的节点间分派数据并使用同步复制来保证数据可用性和容错性。因为数据被分发到有计算能力的节点,数据的处理可以被直接发送到存储有数据的节点。由于Hadoop集群中的每一台节点都存储并处理数据,这些节点都需要配置来满足数据存储和运算的要求。
工作负载很重要吗?在几乎所有情形下,MapReduce要么会在从硬盘或者网络读取数据时遇到瓶颈(称为IO受限的应用),要么在处理数据时遇到瓶颈(CPU受限)。排序是一个IO受限的例子,它需要很少的CPU处理(仅仅是简单的比较操作),但是需要大量的从硬盘读写数据。模式分类是一个CPU受限的例子,它对数据进行复杂的处理,用来判定本体。
下面是更多IO受限的工作负载的例子:
索引
分组
数据导入导出
数据移动和转换
下面是更多CPU受限的工作负载的例子:
聚类/分类
复杂文本挖掘
自然语言处理
特征提取
Cloudera的客户需要完全理解他们的工作负载,这样才能选择最优的Hadoop硬件,而这好像是一个鸡生蛋蛋生鸡的问题。大多数工作组在没有彻底剖析他们的工作负载时,就已经搭建好了Hadoop集群,通常Hadoop运行的工作负载随着他们的精通程度的提高而完全不同。而且,某些工作负载可能会被一些未预料的原因受限。例如,某些理论上是IO受限的工作负载却最终成为了CPU受限,这是可能是因为用户选择了不同的压缩算法,或者算法的不同实现改变了MapReduce任务的约束方式。基于这些原因,当工作组还不熟悉要运行任务的类型时,深入剖析它才是构建平衡的Hadoop集群之前需要做的最合理的工作。
接下来需要在集群上运行MapReduce基准测试任务,分析它们是如何受限的。完成这个目标最直接的方法是在运行中的工作负载中的适当位置添加监视器来检测瓶颈。我们推荐在Hadoop集群上安装Cloudera Manager,它可以提供CPU,硬盘和网络负载的实时统计信息。(Cloudera Manager是Cloudera 标准版和企业版的一个组件,其中企业版还支持滚动升级)Cloudera Manager安装之后,Hadoop管理员就可以运行MapReduce任务并且查看Cloudera Manager的仪表盘,用来监测每台机器的工作情况。
第一步是弄清楚你的作业组已经拥有了哪些硬件
在为你的工作负载构建合适的集群之外,我们建议客户和它们的硬件提供商合作确定电力和冷却方面的预算。由于Hadoop会运行在数十台,数百台到数千台节点上。通过使用高性能功耗比的硬件,作业组可以节省一大笔资金。硬件提供商通常都会提供监测功耗和冷却方面的工具和建议。
相关阅读:
Ubuntu 13.04上搭建Hadoop环境
Ubuntu 12.10 +Hadoop 1.2.1版本集群配置
搭建Hadoop环境(在Winodws环境下用虚拟机虚拟两个Ubuntu系统进行搭建)