// split the 3 channels into 3 images
std::vector<cv::Mat> channels;
cv::split(hsv, channels);
// channels[0] is the Hue
// channels[1] is the Saturation
// channels[2] is the Value
// Hue masking
cv::Mat mask1; // below maxHue
cv::threshold(channels[0], mask1, maxHue, 255, cv::THRESH_BINARY_INV);
cv::Mat mask2; // over minHue
cv::threshold(channels[0], mask2, minHue, 255, cv::THRESH_BINARY);
cv::Mat hueMask; // hue mask
if (minHue < maxHue)
hueMask = mask1 & mask2;
else // if interval crosses the zero-degree axis
hueMask = mask1 | mask2;
// Saturation masking
// below maxSat
cv::threshold(channels[1], mask1, maxSat, 255, cv::THRESH_BINARY_INV);
// over minSat
cv::threshold(channels[1], mask2, minSat, 255, cv::THRESH_BINARY);
cv::Mat satMask; // saturation mask
satMask = mask1 & mask2;
// combined mask
mask = hueMask&satMask;
}
int main()
{
// 读入图像
cv::Mat image= cv::imread("girl.jpg");
if (!image.data)
return 0;
// show original image
cv::namedWindow("Original image");
cv::imshow("Original image",image);
// detect skin tone
cv::Mat mask;
detectHScolor(image,
160, 10, // hue from 320 degrees to 20 degrees
25, 166, // saturation from ~0.1 to 0.65
mask);
// show masked image
cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 0));
image.copyTo(detected, mask);
cv::imshow("Detection result",detected);
cv::waitKey();
}
在检测时没有考虑颜色的亮度。在实际应用中,排除较高亮度的颜色可以降低把明亮的淡红色误认为皮肤的可能性。所以要想对皮肤颜色进行可靠和准确的检测, 还需要更加精确的分析。对不同的图像进行检测,也很难保证效果都好,因为摄影时影响彩色再 现的因素有很多,如白平衡和光照条件等。