<< : 按二进制形式把所有的数字向左移动对应的位数,高位移出(舍弃),低位的空位补零。在数字没有溢出的前提下,对于正数和负数,左移一位都相当于乘以2的1次方,左移n位就相当于乘以2的n次方;
>>: 按二进制形式把所有的数字向右移动对应位移位数,低位移出(舍弃),高位的空位补符号位,即正数补零,负数补1。右移一位相当于除2,右移n位相当于除以2的n次方。
>>>: 无符号右移,忽略符号位,空位都以0补齐
我们拿数字10做示例,经过(number - 1) << 1 = 18,二进制表示为:10010
i |= (i >> 1) 即:10010 | 01001 = 11011
i |= (i >> 2) 即:11011 | 00110 = 11111
i |= (i >> 4) 即:11111 | 00001 = 11111
……
其实这几步就是把i的最高位1之后的所有位都变成1
然后 i – (i >>> 1) 即:11111-01111=10000(16)
这步是把最高位,之后的都变成0,这样就求出了最接近10的2的N次方(16)
至于为什么要不数组的Size设置为2的N次方,我们后面说。
hash — 计算Key的hash值
01 02 03 04 05 06 07 08 09 10 11 12 13 14
final int hash(Object k) { int h = hashSeed; if (0 != h && k instanceof String) { return sun.misc.Hashing.stringHash32((String) k); } h ^= k.hashCode(); // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); }
根据上面的注释,我们可以看出,HashMap中使用的hash值,不是Key直接的hashCode,而是经过一系列计算的。
计算hash值的作用就是避免hash碰撞,尽量减少单向链表的产生,因为链表中查找一个元素需要遍历。
indexFor — 计算Key所对应的数组位置
01 02 03 04
static int indexFor(int h, int length) { // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2"; return h & (length-1); }
第一次看到这个方法很是不理解,不是应该用 h % length吗?其实这里用了一个非常巧妙的方法来取这个余数。
在计算机中CPU做除法运算、取余运算耗费的CPU周期都比较长,一般几十个CPU周期,而位移运算、位运算只用一个CPU周期。
这样对于性能要求高的地方,就可以用位运算代替普通的除法、取余等运算,JDK源码中有很多这样的例子。
为了能够使用位运算求出这个余数,length必须是2的N次方,这也是我们上面初始化数组大小时要求的,然后使用 h & (length-1),就可以求出余数。具体的算法推导,请自行搜索。
我们用个例子来说明下,如一个Key经过运算的hash为21,length为16:
直接取余运算:21 % 16 = 5
位运算:10101(21) & 01111(16-1) = 00101(5)
哇,这就是计算机运算的魅力,这就是算法的作用。
addEntry — 添加数据
01 02 03 04 05 06 07 08 09 10
void addEntry(int hash, K key, V value, int bucketIndex) { //如果size大于等于threshold,且数组的这个位置不为null,则扩容数组 if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); }
threshold:HashMap实际可以存储的Key的个数,如果size大于threshold,说明HashMap已经太饱和了,非常容易发生hash碰撞,导致单向链表的产生。
在inflateTable方法中,我们可以看到
01
threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
所以这个值是由HashMap的capacity 和负载因子(loadFactor默认:0.75)计算出来的。
loadFactor越小,相同的capacity就更频繁地扩容,这样的好处是HashMap会很大,产生hash碰撞的几率就更小,但需要的内存也更多,这就是所谓的空间换时间。
在这里也注意,扩容时会直接将原来容量乘以2,满足了length为2的N次方的条件。
createEntry就不多说了,就是将key、value保存到数组响应的位置。
GET
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
final Entry<K,V> getEntry(Object key) { if (size == 0) { return null; } //用和添加时相同的算法求出hash值 int hash = (key == null) ? 0 : hash(key); //直接从数组的响应位置拿到数据,判断hash相同、key相同,则返回 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; }
获取时非常简单,也非常迅速,添加时做的所有工作都是为快速获取做的工作。
总结HashMap是一个非常高效的Key、Value数据结构,GET的时间复杂度为:O(1) ~ O(n),我们在使用HashMap时需要注意以下几点:
1. 声明HashMap时最好使用带initialCapacity的构造函数,传入数据的最大size,可以避免内部数组resize;