C++ 实现01背包动态规划

简述一下01背包:

背包容量大小固定,有一些物品,每个物品都有重量和价值两个属性,且物品唯一不重复(即同一物品只能放入一个),放入物品的总重量不能超过背包容量 ,求放入背包的物品的总价值最大化。0代表不放入,1代表放入。

可以通过建表的方式实现01背包,非递归实现。

如果用c[i]表示 i 号物品的重量,v[i]表示 i 号物品的价值,函数f(i,j)表示在有0,1,2...i 号物品和重量限制 j 时能够得到的最大价值,表result[i][j]=f(i,j)

那么可以f(i,j)=max((result[i - 1][j - c[i]] + v[i]),(result[i - 1][j]))查表非递归。

考虑如下:

有一个物品,我们需要考虑该不该把他放入背包中,无非放入和不放入两种情况,那么我们只需要把两种情况下的总价值都算出来,然后取较大的一个就可以了。

result[i - 1][j - c[i]] + v[i]:放入的情况

总价值为 有 i-1 个物品且重量上限为当前上限 j 减去 i 号物品的重量时的价值 result[i - 1][j - c[i]] 加上 i 号物品的价值 v[i]

result[i - 1][j]:不放入的情况,总价值和 i-1 个物品时一样(当前考虑的物品是 i 号物品)

代码部分:

#include<iostream>
#include<string>
using namespace std;
int c[11]; //重量
int v[11]; //价值
int result[11][1001]; //表

///f()函数,计算在i+1个物品和重量上限j的条件下的最大背包价值

int f(int i,int j) //第i个物品,重量上限j  //0号物品即第一个物品
{
    if (i == 0&&c[i]<=j) //0号物品且重量小于上限
    {
        return v[i]; //把0号物品放入背包,背包价值为第0号物品的价值
    }
    if (i == 0 && c[i] > j)  //0号物品且重量大于上限
    {
        return 0; //物品放不进背包,此时背包为空,背包价值为0
    }

//不是0号物品的情况
    if (i != 0 && j-c[i] >= 0) //i号物品可以放入背包
    {
        //判断放入和不放入两种情况下背包的价值,选择价值大的方案
        return (result[i - 1][j - c[i]] + v[i]) > result[i - 1][j] ? (result[i - 1][j - c[i]] + v[i]) : result[i - 1][j];
    }          //把这个物品放入背包                //不放入背包
    else //i号物品不可以放入背包
    return  result[i - 1][j];
}


int getResult(int top, int num)
{
    if (num == 0) //有0个物品
        return 0;

else
    {
       
        for (int i = 0; i < num; i++) //第i个物品
        {
            for (int j = 0; j <= top; j++) //重量
            {
                result[i][j] = f(i,j); //建表,result[i][j]表示有0,1,2...i个物品和j的重量限制下的最大背包价值
            }
        }
        return result[num-1][top];
    }
}

int main()
{
    int top; //背包容量
    int num; //物品数量
    cout << "输入格式:上限,数量,每个物品的重量和价值。" << endl;
    cin >> top;
    cin >> num;
    for (int i = 0; i < num; i++) //第i个物品的重量和价值
    {
        cin >> c[i] >> v[i];
    }
    cout << getResult(top, num) << endl;
    return 0;
}

测试样例1:

C++ 实现01背包动态规划

测试样例2:

C++ 实现01背包动态规划

测试样例3:

C++ 实现01背包动态规划

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/c85d0fca6eabb9087bb7776217875a55.html