看了Linux内核内存管理,参考网上的意见整理了一下。
1.页框管理
Linux采用4KB页框大小作为标准的内存分配单元。内核必须记录每个页框的状态,这种状态信息保存在一个类型为page的页描述符中,所有的页描述存放在mem_map中。virt_to_page(addr)产生线性地址对应的页描述符地址。pfn_to_page(pfn)产生对应页框号的页描述符地址。
在页框描述符中,几个关键的字段我认为:flags、_count、_mapcount。
由于CPU对内存的非一致性访问,系统的物理内存被划分为几个节点(每个节点的描述符为pg_data_t),每个节点的物理内存又可以分为3个管理区:ZONE_DMA(低于16M的页框地址),ZONE_NORMAL(16MB-896MB的页框地址)和ZONE_HIGHMEM(高于896MB的页框地址)。
每个管理区又有自己的描述符,描述了该管理区空闲的页框,保留页数目等。每个页描述符都有到内存节点和到节点管理区的连接(被放在flag的高位字段)。
内核调用一个内存分配函数时,必须指明请求页框所在的管理区,内核通常指明它愿意使用哪个管理区。
2.保留的页框池
如果有足够的空闲内存可用、请求就会被立刻满足。否则,必须回收一些内存,并且将发出请求的内核控制路径阻塞,直到有内存被释放。但是有些控制路径不能被阻塞,例如一些内核路径产生一些原子内存分配请求。尽管无法保证一个原子内存分配请求不失败,但是内核会减少这中概率。为了做到如此,内核采取的方案为原子内存分配请求保留一个页框池,只有在内存不足时才使用。页框池有ZONE_DMA和ZONE_NORMAL两个区贡献出一些页框。
常用的请求页框和释放页框函数:
alloc_pages(gfp_mask, order): 获得连续的页框,返回页描述符地址,是其他类型内存分配的基础。
__get_free_pages(gfp_mask, order): 获得连续的页框,返回页框对应的线性地址。线性地址与物理地址是内核直接映射方式。不能用于大于896M的高端内存。
__free_pages(page,order);
__free_pages(addr,order);
3.高端内存页框的内核映射
高端内存是指物理地址大于 896M 的内存。对于这样的内存,无法在“内核直接映射空间”进行映射。因为“内核直接映射空间”最多只能从 3G 到 4G,只能直接映射 1G 物理内存,对于大于 1G 的物理内存,无能为力。实际上,“内核直接映射空间”也达不到 1G, 还得留点线性空间给“内核动态映射空间” 呢。因此,Linux 规定“内核直接映射空间” 最多映射 896M 物理内存。
对于高端内存,可以通过 alloc_page() 或者其它函数获得对应的 page,但是要想访问实际物理内存,还得把 page 转为线性地址才行(为什么?想想 MMU 是如何访问物理内存的),也就是说,我们需要为高端内存对应的 page 找一个线性空间,这个过程称为高端内存映射。高端内存映射有三种方式:
(1)永久内核映射
永久内核映射允许内核建立到高端页框内核地址空间的长期映射。当空闲页表项不存在时,也就是高端内存中没有页表项用用作页框的“窗口”时,永久内核映射可能阻塞当前进程。因此永久内核映射不能用用于中断处理程序和可延迟函数。
永久内核映射使用主内核页表中的一个专门页表,其地址存放在pkmap_page_table中。页表的表项有LAST_PKMAP产生。该页表映射的线性地址为从PKMAP_BASE开始,即内核专门为此留出一块线性空间,从 PKMAP_BASE 到 FIXADDR_START ,用于映射高端内存。在 2.4 内核上,这个地址范围是 4G-8M 到 4G-4M 之间。这个空间起叫“内核永久映射空间”或者“永久内核映射空间”
如果是通过 alloc_page() 获得了高端内存对应的 page,如何给它找个线性空间?(就是上面的PKMAP_BASE 到 FIXADDR_START)。
这个空间和其它空间使用同样的页目录表,对于内核来说,就是 swapper_pg_dir,对普通进程来说,通过 CR3 寄存器指向。
通常情况下,这个空间是 4M 大小,因此仅仅需要一个页表即可,内核通过来 pkmap_page_table 寻找这个页表。
通过 kmap(), 可以把一个 page 映射到这个空间来。