iBeacon是苹果公司推出的一项低耗能蓝牙技术,由蓝牙设备发射包含指定信息的信号,再由移动设备接收信号,从而实现近场通信。微信小程序2017年开始支持iBeacon,摇一摇附近就是基于iBeacon实现的,此外iBeacon还可以实现距离测量,本文将介绍如何基于微信小程序实现iBeacon测距。
iBeacon测距原理
蓝牙信标发射的信号强度(rssi)与收发设备之间的距离,某种程度上呈正相关,因此通过合理的运算转化,可以通过rssi的值反推出与接收设备间的距离。
蓝牙信标的rssi值是一个参考值,没有固定标准。想要计算出蓝牙信标的距离,还必须知道这个信标设备的txPower值。txPower是指当距离蓝牙信标1m时的rssi值,不同的蓝牙设备或相同设备不同的工况甚至不同的场地环境,都会影响txPower值,因此这个值虽然可以测量,但一定程度上是个经验值,无法测准。
rssi测距公式
知道rssi和txPower后就可以计算距离了,有两种计算公式:
一、
这个公式里的三个变量A、B、C都是经验值,需要根据手机系统或硬件型号精确调校,通常会将所有设备的校准结果保存成一个设备信息表,移动终端先检测本机型号,然后匹配设备信息调取相应的计算配置,再进行计算。很明显这个公式是比较依赖硬件调校的,没有数据储备的前提下这个公式会很难用。
转换成js代码:
const calculateAccuracy = function (txPower, rssi) { return (0.89976) * Math.pow(rssi / txPower, 7.7095) + 0.111 }
未精校情况下的测距表现:
先说这个图怎么看。
纵轴代表测量距离,横轴代表时间,每隔一秒取样一次,图中是近10次取样的数值曲线。
绿线是设备接收到的rssi值,反应硬件真实接收到的数据情况;
红线是套用公式计算得出的瞬时距离;
黄线是微信小程序自带的瞬时测距结果。
蓝牙信标与手机的实际距离1m,测试设备为红米Note7。
从上图可见,rssi值相对稳定,说明硬件没有太大问题。红线和黄线的波动都很大,说明准确度不咋地。二者的波动趋势几乎一致,所以有理由怀疑微信小程序内部也是用的这个测距公式。从结果来看,这个公式的准确度比较差,可能是因为没有精校的原因。
二、
这个公式里的A就是rssi,tx是txPower,n是经验值,n的取值跟物理环境有关。
const calculateAccuracy = function (txPower, rssi) { return Math.pow(10, Math.abs(rssi - txPower) / (10 * 4)) }
公式二的测距表现:
人比人得死,货比货得扔啊。
图中黄线还是波动的那么疯狂,但红线却异常稳定,而且呈现出跟绿线一致的波动幅度,说明测距精度靠谱。这个公式只有一个参数,生产环境中的调校相对简单,这里我们选择公式二作为测距公式。
iBeacon测距稳定程序
蓝牙信号本身就有波动性,加上现实环境中的很多因素也会影响到信号强度,比如物体遮挡、设备方向变化、硬件自身的稳定性等,所以接收设备检测到的rssi值通常是“跳动”的,直接使用测距公式算出的结果,往往不可用。必须实现一个稳定程序,让计算结果呈现出连续性和稳定性。
数据滤波
稳定程序主要做的事就是对波段数据“削峰填谷”,也可以称作数据滤波。最简单的滤波处理,就是收集一段时间的值求平均,只要硬件不出问题,固定距离的蓝牙信标rssi值总是会在一个相对稳定的区间内变化,采样时间越长,采样的平均值就会越接近真实值,因此在静态测距场景中,求平均是最佳方式。
//求数组平均值 const arrayAverage = arr => arr.reduce((acc, val) => acc + val, 0) / arr.length; return arrayAverage([...])
具体实现是,当程序源源不断的接收到信标的rssi时,先用公式计算出瞬时测距结果,然后将结果存进一个数组,然后计算这个数组的平均值。静态测距时,测量结果还是非常准的,2m以内的距离误差可以低至0.1m。
实际应用中往往都是动态测距,所以采样数据的长度要加以限制,比如按后进先出的顺序,取最近10组数据。具体采样队列设为多长,要根据项目实际需求而定。采样队列的长度越长,测距结果越平滑,但对移动端的动态捕捉越迟钝;反之采样队列越短,结果越锐利,对移动端的动态捕捉越灵敏。