def download_many(cc_list):
cc_list = cc_list[:5]
with futures.ThreadPoolExecutor(max_workers=3) as executor:
to_do = []
for cc in sorted(cc_list):
future = executor.submit(download_one,cc)
to_do.append(future)
msg = "Secheduled for {}:{}"
print(msg.format(cc,future))
results = []
for future in futures.as_completed(to_do):
res = future.result()
msg = "{}result:{!r}"
print(msg.format(future,res))
results.append(res)
return len(results)
if __name__ == '__main__':
main(download_many)
结果如下:
注意:Python代码是无法控制GIL,标准库中所有执行阻塞型IO操作的函数,在等待操作系统返回结果时都会释放GIL.运行其他线程执行,也正是因为这样,Python线程可以在IO密集型应用中发挥作用
以上都是concurrent.futures启动线程,下面通过它启动进程
concurrent.futures启动进程concurrent.futures中的ProcessPoolExecutor类把工作分配给多个Python进程处理,因此,如果需要做CPU密集型处理,使用这个模块能绕开GIL,利用所有的CPU核心。
其原理是一个ProcessPoolExecutor创建了N个独立的Python解释器,N是系统上面可用的CPU核数。
使用方法和ThreadPoolExecutor方法一样