华为笔试题:C++平安果DP算法

题目介绍:给出一个m*n的格子,每个格子里有一定数量的平安果,现在要求从左上角顶点(1,1)出发,每次走一格并拿走那一格的所有平安果,且只能向下或向右前进,最终到达右下角顶点(m,n),要求求出能拿走的平安果的最大数值。

输入:第一行有两个数值m,n,然后是m行n列数值。

输出:一个数值代表平安果的最大数量。

例:

输入:

4 4

1 2 4 8

10 14 3 9

17 6 7 20

12 5 21 23

输出:

89

分析:这是一种比较典型的dp算法(动态规划)的题目,每一格获取的平安果最大数值都与上格或左格有关(即交叠问题),且无后效性。这题也证明了动态规划可以解决贪心算法所解决不了的问题,若用贪心算法,不一定能得出总体最优解。

状态方程:dp[ i ][ j ]=max{ dp[ i-1 ][ j ] , dp[ i ][ j-1 ]}+A[ i ][ j ] 

代码如下:

#include <vector>
#include <iostream>
using namespace std;
int main()
{
    int m, n;
    int i, j;
    while (cin >> m >> n)
    {
        vector<vector<int>> ivec(m, vector<int>(n));
        for (i = 0; i < m; ++i)
        {
            for (j = 0; j < n; ++j)
            {
                cin >> ivec[i][j];
            }
        }
        vector<vector<int>> dp(ivec);
        for (i = 1; i < m; ++i)
        {
            dp[i][0] += dp[i - 1][0];
        }
        for (j = 1; j < n; ++j)
        {
            dp[0][j] += dp[0][j - 1];
        }
        for (i = 1; i < m; ++i)
        {
            for (j = 1; j < n; ++j)
            {
                dp[i][j] += (dp[i - 1][j] < dp[i][j - 1]) ? dp[i][j - 1] : dp[i - 1][j];
            }
        }
        cout << dp[m - 1][n - 1] << endl;
    }
    return 0;
}

结果如下图所示:

华为笔试题:C++平安果DP算法

Linux公社的RSS地址:https://www.linuxidc.com/rssFeed.aspx

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/df9067a2ce581477213cf0cfa3cedc71.html