reduce 的计算过程,在范畴论里面叫 catamorphism,即一种连接的变形。和它相反的变形叫 anamorphism。现在我们定义一个和 reduce 计算过程相反的函数 unfold(注:reduce 在 Haskell 里面叫 fold,对应 unfold)
const unfold = (f, seed) => { const go = (f, seed, acc) => { const res = f(seed); return res ? go(f, res[1], acc.concat(res[0])) : acc; }; return go(f, seed, []); };
根据这个 unfold 函数,定义一个 Python 里面的 range 函数。
答案:
const range = (min, max, step = 1) => unfold(x => x < max && [x, x + step], min);
三,用递归代替循环
问题十四:
将两个数组每个元素一一对应相加
const num1 = [3, 4, 5, 6, 7]; const num2 = [43, 23, 5, 67, 87];
答案:
const zipWith = f => xs => ys => { if (xs.length === 0 || ys.length === 0) return []; const [xHead, ...xTail] = xs; const [yHead, ...yTail] = ys; return [f(xHead)(yHead), ...zipWith(f)(xTail)(yTail)]; }; const add = x => y => x + y; zipWith(add)(num1)(num2);
问题十五:
将 Stark 家族成员提取出来。注意,目标数据在数组前面,使用 filter 方法遍历整个数组是浪费。
const houses = [ "Eddard Stark", "Catelyn Stark", "Rickard Stark", "Brandon Stark", "Rob Stark", "Sansa Stark", "Arya Stark", "Bran Stark", "Rickon Stark", "Lyanna Stark", "Tywin Lannister", "Cersei Lannister", "Jaime Lannister", "Tyrion Lannister", "Joffrey Baratheon" ];
答案:
const takeWhile = f => ([head, ...tail]) => f(head) ? [head, ...takeWhile(f)(tail)] : []; const isStark = name => name.toLowerCase().includes("stark"); takeWhile(isStark)(houses);
四,使用高阶函数遍历数组时可能遇到的陷阱
问题十六:
从长度为 100 万的随机整数组成的数组中取出偶数,再把所有数字乘以 3
// 用我们刚刚定义的辅助函数来生成符合要求的数组 const bigArr = genNumArr(1e6, 100);
能运行的答案:
const isOdd = num => num % 2 === 0; const triple = num => num * 3; bigArr.filter(isOdd).map(triple);
注意,上面的解决方案将数组遍历了两次,无疑是浪费。如果写 for 循环,只用遍历一次:
const results = []; for (let i = 0; i < bigArr.length; i++) { if (isOdd(bigArr[i])) { results.push(triple(bigArr[i])); } }
在我的电脑上测试,先 filter 再 map 的方法耗时 105.024 ms,而采用 for 循环的方法耗时仅 25.598 ms!那是否说明遇到此类情况必须用 for 循环解决呢? No!
五,死磕到底,Transduce!
我们先用 reduce 来定义 filter 和 map,至于为什么这样做等下再解释。
const filter = (f, arr) => arr.reduce((acc, val) => (f(val) && acc.push(val), acc), []); const map = (f, arr) => arr.reduce((acc, val) => (acc.push(f(val)), acc), []);
重新定义的 filter 和 map 有共有的逻辑。我们把这部分共有的逻辑叫做 reducer。有了共有的逻辑后,我们可以进一步地抽象,把 reducer 抽离出来,然后传入 filter 和 map:
const filter = f => reducer => (acc, value) => { if (f(value)) return reducer(acc, value); return acc; }; const map = f => reducer => (acc, value) => reducer(acc, f(value));
现在 filter 和 map 的函数 signature 一样,我们就可以进行函数组合(function composition)了。
const pushReducer = (acc, value) => (acc.push(value), acc); bigNum.reduce(map(triple)(filter(isOdd)(pushReducer)), []);
但是这样嵌套写法易读性太差,很容易出错。我们可以写一个工具函数来辅助函数组合:
const pipe = (...fns) => (...args) => fns.reduce((fx, fy) => fy(fx), ...args);
然后我们就可以优雅地组合函数了:
bigNum.reduce( pipe( filter(isOdd), map(triple) )(pushReducer), [] );
经过测试(用 console.time()/console.timeEnd()),上面的写法耗时 33.898 ms,仅比 for 循环慢 8 ms。为了代码的易维护性和易读性,这点性能上的微小牺牲,我认为是可以接受的。
这种写法叫 transduce。有很多工具库提供了 transducer 函数。比如 transducers-js。除了用 transducer 来遍历数组,还能用它来遍历对象和其它数据集。功能相当强大。
六,for 循环和 for ... of 循环的区别