Python 3 利用 Dlib 19.7 进行人脸识别

  自己在下载dlib官网给的example代码时,一开始不知道怎么使用,在一番摸索之后弄明白怎么使用了;

  现分享下 face_detector.py 和 face_landmark_detection.py 这两个py的使用方法;

  1.简介

  Python:  3.6.3

  dlib:    19.7  

  利用dlib的特征提取器,进行人脸 矩形框 的特征提取:

1 dets = dlib.get_frontal_face_detector(img)

  利用dlib的68点特征预测器,进行人脸 68点 特征提取:

1 predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat") 2 shape = predictor(img, dets[0])

    效果:

    

  

      (a) face_detector.py        (b) face_landmark_detection.py

2.py文件功能介绍

  face_detector.py :        识别出图片文件中一张或多张人脸,并用矩形框框出标识出人脸;

    link:

  face_landmark_detection.py :  在face_detector.py的识别人脸基础上,识别出人脸部的具体特征部位:下巴轮廓、眉毛、眼睛、嘴巴,同样用标记标识出面部特征;

      link:

    2.1. face_detector.py

    官网给的face_detector.py

#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
#  This example program shows how to find frontal human faces in an image.  In
#  particular, it shows how you can take a list of images from the command
#  line and display each on the screen with red boxes overlaid on each human
#  face.
#
#  The examples/faces folder contains some jpg images of people.  You can run
#  this program on them and see the detections by executing the
#  following command:
#      ./face_detector.py ../examples/faces/*.jpg
#
#  This face detector is made using the now classic Histogram of Oriented
#  Gradients (HOG) feature combined with a linear classifier, an image
#  pyramid, and sliding window detection scheme.  This type of object detector
#  is fairly general and capable of detecting many types of semi-rigid objects
#  in addition to human faces.  Therefore, if you are interested in making
#  your own object detectors then read the train_object_detector.py example
#  program. 
#
#
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
#  You can install dlib using the command:
#      pip install dlib
#
#  Alternatively, if you want to compile dlib yourself then go into the dlib
#  root folder and run:
#      python setup.py install
#  or
#      python setup.py install --yes USE_AVX_INSTRUCTIONS
#  if you have a CPU that supports AVX instructions, since this makes some
#  things run faster. 
#
#  Compiling dlib should work on any operating system so long as you have
#  CMake and boost-python installed.  On Ubuntu, this can be done easily by
#  running the command:
#      sudo apt-get install libboost-python-dev cmake
#
#  Also note that this example requires scikit-image which can be installed
#  via the command:
#      pip install scikit-image
#  Or downloaded from

import sys

import dlib
from skimage import io


detector = dlib.get_frontal_face_detector()
win = dlib.image_window()

for f in sys.argv[1:]:
    print("Processing file: {}".format(f))
    img = io.imread(f)
    # The 1 in the second argument indicates that we should upsample the image
    # 1 time.  This will make everything bigger and allow us to detect more
    # faces.
    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))
    for i, d in enumerate(dets):
        print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
            i, d.left(), d.top(), d.right(), d.bottom()))

win.clear_overlay()
    win.set_image(img)
    win.add_overlay(dets)
    dlib.hit_enter_to_continue()

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/fc4338304d88a20f3fd60a3ead43936a.html