通常,每一个map可能会产生大量的输出,combiner的作用就是在map端对输出先做一次合并,以减少传输到reducer的数据量。
我们以计算特定key对应值的平均值为例,展示一下combiner的用法:
class Mapper
method Map(string t, integer r)
Emit(string t, integer r)
class Combiner
method Combine(string t, integers [r1, r2, . . .])
sum ← 0
cnt ← 0
for all integer r ∈ integers [r1, r2, . . .] do
sum ← sum + r
cnt ← cnt + 1
Emit(string t, pair (sum, cnt)) // Separate sum and count
class Reducer
method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
sum ← 0
cnt ← 0
for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
sum ← sum + s
cnt ← cnt + c
ravg ← sum/cnt
Emit(string t, integer ravg)
乍一看应该没有问题,但是不幸的是,这个combiner是不正确的。因为框架要求,combiner的输入输出类型必须和mapper的输出以及reducer的输入类型一致。而上面的伪代码中,mapper的输出类型为<string, integer>,而combiner的输出类型为<string, pair<integer, integer>>,这样的话,combiner就不能正常工作。
改变的方式非常简单,把mapper的输出包装一下即可:
class Mapper
method Map(string t, integer r)
Emit(string t, pair (r, 1))
class Combiner
method Combine(string t, pairs [(s1, c1), (s2, c2) . . .])
sum ← 0
cnt ← 0
for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
sum ← sum + s
cnt ← cnt + c
Emit(string t, pair (sum, cnt))
class Reducer
method Reduce(string t, pairs [(s1, c1), (s2, c2) . . .])
sum ← 0
cnt ← 0
for all pair (s, c) ∈ pairs [(s1, c1), (s2, c2) . . .] do
sum ← sum + s
cnt ← cnt + c
ravg ← sum/cnt
Emit(string t, integer ravg)
2. Partitioner
首先需要继承自Partitioner类(在0.19中为Partitioner接口),并重载它的getPartition方法:
[java]
public static class CatPartitioner extends Partitioner<Text, Text> { @Override public int getPartition(Text key, Text value, int numPartitions) { String[] parts = key.toString().split("-"); if (parts.length == 2) { return Math.abs(parts[0].hashCode()) % numPartitions; } return Math.abs(key.toString().hashCode()) % numPartitions; } }然后在job配置中设置Partitioner Class:
[java]
job.setPartitionerClass(CatPartitioner.class);