javascript常用经典算法实例详解(2)

邻接矩阵、邻接表都是图的基本存储方式,
稀松图情况下(即边远小于顶点情况下),用邻接表存储比较适合(相对矩阵N*N而言,邻接表只存储有值的边、顶点,不存储空值,存储效率更高)
稠密图情况下(即边远大地顶点情况下),用邻接矩阵存储比较适合(数据较多的情况下,要对较做遍历,如果用链表存储,要经常跳来跳去,效率较低)

堆:

几乎完全的二叉树除了最右边位置上的一个或几个叶子可能缺少的二叉树。在物理存储上,可以用数组来存储,如果A[j]的顶点有左、右子节点,则左节点为A[2j]、右节点为A[2j+1],A[j]的父顶点存储在A[j/2]中

堆:本身是一颗几乎完全的二叉树,而且父节点的值不小于子节点的值。应用场景:优先队列,寻找最大或次最大值;以及把一个新元素插入优先队列。

注:以下所有讨论的堆,约定索引0处的元素仅占位,有效元素从下标1开始

根据堆的定义,可以用以下代码测试一个数组是否为堆:

//测试数组H是否为堆 //(约定有效元素从下标1开始) //时间复杂度O(n) function isHeap(H) { if (H.length <= 1) { return false; } var half = Math.floor(H.length / 2); //根据堆的性质,循环上限只取一半就够了 for (var i = 1; i <= half; i++) { //如果父节点,比任何一个子节点 小,即违反堆定义 if (H[i] < H[2 * i] || H[i] < H[2 * i + 1]) { return false; } } return true; }

节点向上调整siftUp

某些情况下,如果堆中的某个元素值改变后(比如 10,8,9,7 变成 10,8,9,20 后,20需要向上调整 ),不再满足堆的定义,需要向上调整时,可以用以下代码实现

//堆中的节点上移 //(约定有效元素从下标1开始) function siftUp(H, i) { if (i <= 1) { return; } for (var j = i; j > 1; j = Math.floor(j / 2)) { var k = Math.floor(j / 2); //发现 子节点 比 父节点大,则与父节点交换位置 if (H[j] > H[k]) { var t = H[j]; H[j] = H[k]; H[k] = t; } else { //说明已经符合堆定义,调整结束,退出 return; } } }

节点向下调整siftDown (既然有向上调整,自然也有向下调整)

//堆中的节点下移 //(约定有效元素从下标1开始) //时间复杂度O(logN) function siftDown(H, i) { if (2 * i > H.length) { //叶子节点,就不用再向下移了 return; } for (var j = 2 * i; j < H.length; j = 2 * j) { //将j定位到 二个子节点中较大的那个上(很巧妙的做法) if (H[j + 1] > H[j]) { j++; } var k = Math.floor(j / 2); if (H[k] < H[j]) { var t = H[k]; H[k] = H[j]; H[j] = t; } else { return; } } }

向堆中添加新元素

//向堆H中添加元素x //时间复杂度O(logN) function insert(H, x) { //思路:先在数组最后加入目标元素x H.push(x); //然后向上推 siftUp(H, H.length - 1); }

从堆中删除元素

//删除堆H中指定位置i的元素 //时间复杂度O(logN) function remove(H, i) { //思路:先把位置i的元素与最后位置的元素n交换 //然后数据长度减1(这样就把i位置的元素给干掉了,但是整个堆就被破坏了) //需要做一个决定:最后一个元素n需要向上调整,还是向下调整 //依据:比如比原来该位置的元素大,则向上调整,反之向下调整 var x = H[i]; //先把原来i位置的元素保护起来 //把最后一个元素放到i位置 //同时删除最后一个元素(js语言的优越性体现!) H[i] = H.pop(); var n = H.length - 1; if (i == n + 1) { //如果去掉的正好是最后二个元素之一, //无需再调整 return ; } if (H[i] > x) { siftUp(H, i); } else { siftDown(H, i); } } //从堆中删除最大项 //返回最大值 //时间复杂度O(logN) function deleteMax(H) { var x = H[1]; remove(H, 1); return x; }

堆排序

这是一种思路非常巧妙的排序算法,精华在于充分利用了“堆”这种数据结构本身的特点(首元素必然最大),而且每个元素的上移、下调,时间复试度又比较低,仅为O(logN),空间上,也无需借助额外的存储空间,仅在数组自身内部交换元素即可。

思路:

1、先将首元素(即最大元素)与最末尾的元素对调---目的在于,把最大值沉底,下一轮重就不再管它了
2、经过1后,剩下的元素通常已经不再是一个堆了。这时,只要把新的首元素用siftDown下调,调整完以后,新的最大值元素自然又上升到了首元素的位置
3、反复1、2,大的元素逐一沉底,最后整个数组就有序了。
时间复杂度分析:创建堆需要O(n)的代价,每次siftDown代价为O(logN),最多调整n-1个元素,所以总代价为 O(N) + (N-1)O(logN),最终时间复杂度为O(NLogN)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wgzdzz.html