《吐血整理》Redis 性能优化的 13 条军规!史上最全 (2)

删除 (del) 一个大数据的时候,可能会需要很长时间,所以建议用异步删除的方式 unlink,它会启动一个新的线程来删除目标数据,而不阻塞 Redis 的主线程。

5.使用 slowlog 优化耗时命令

我们可以使用 slowlog 功能找出最耗时的 Redis 命令进行相关的优化,以提升 Redis 的运行速度,慢查询有两个重要的配置项:

slowlog-log-slower-than :用于设置慢查询的评定时间,也就是说超过此配置项的命令,将会被当成慢操作记录在慢查询日志中,它执行单位是微秒 (1 秒等于 1000000 微秒);

slowlog-max-len :用来配置慢查询日志的最大记录数。

我们可以根据实际的业务情况进行相应的配置,其中慢日志是按照插入的顺序倒序存入慢查询日志中,我们可以使用 slowlog get n 来获取相关的慢查询日志,再找到这些慢查询对应的业务进行相关的优化。

6.使用 Pipeline 批量操作数据

Pipeline (管道技术) 是客户端提供的一种批处理技术,用于一次处理多个 Redis 命令,从而提高整个交互的性能。

我们使用 Java 代码来测试一下 Pipeline 和普通操作的性能对比,Pipeline 的测试代码如下:

public class PipelineExample { public static void main(String[] args) { Jedis jedis = new Jedis("127.0.0.1", 6379); // 记录执行开始时间 long beginTime = System.currentTimeMillis(); // 获取 Pipeline 对象 Pipeline pipe = jedis.pipelined(); // 设置多个 Redis 命令 for (int i = 0; i < 100; i++) { pipe.set("key" + i, "val" + i); pipe.del("key"+i); } // 执行命令 pipe.sync(); // 记录执行结束时间 long endTime = System.currentTimeMillis(); System.out.println("执行耗时:" + (endTime - beginTime) + "毫秒"); } } 复制代码

以上程序执行结果为:

执行耗时:297毫秒

普通的操作代码如下:

public class PipelineExample { public static void main(String[] args) { Jedis jedis = new Jedis("127.0.0.1", 6379); // 记录执行开始时间 long beginTime = System.currentTimeMillis(); for (int i = 0; i < 100; i++) { jedis.set("key" + i, "val" + i); jedis.del("key"+i); } // 记录执行结束时间 long endTime = System.currentTimeMillis(); System.out.println("执行耗时:" + (endTime - beginTime) + "毫秒"); } } 复制代码

以上程序执行结果为:

执行耗时:17276毫秒

从以上的结果可以看出,管道的执行时间是 297 毫秒,而普通命令执行时间是 17276 毫秒,管道技术要比普通的执行大约快了 58 倍。

7.避免大量数据同时失效

Redis 过期键值删除使用的是贪心策略,它每秒会进行 10 次过期扫描,此配置可在 redis.conf 进行配置,默认值是 hz 10,Redis 会随机抽取 20 个值,删除这 20 个键中过期的键,如果过期 key 的比例超过 25% ,重复执行此流程,如下图所示:

img

如果在大型系统中有大量缓存在同一时间同时过期,那么会导致 Redis 循环多次持续扫描删除过期字典,直到过期字典中过期键值被删除的比较稀疏为止,而在整个执行过程会导致 Redis 的读写出现明显的卡顿,卡顿的另一种原因是内存管理器需要频繁回收内存页,因此也会消耗一定的 CPU。

为了避免这种卡顿现象的产生,我们需要预防大量的缓存在同一时刻一起过期,就简单的解决方案就是在过期时间的基础上添加一个指定范围的随机数。

8.客户端使用优化

在客户端的使用上我们除了要尽量使用 Pipeline 的技术外,还需要注意要尽量使用 Redis 连接池,而不是频繁创建销毁 Redis 连接,这样就可以减少网络传输次数和减少了非必要调用指令。

9.限制 Redis 内存大小

在 64 位操作系统中 Redis 的内存大小是没有限制的,也就是配置项 maxmemory 是被注释掉的,这样就会导致在物理内存不足时,使用 swap 空间既交换空间,而当操心系统将 Redis 所用的内存分页移至 swap 空间时,将会阻塞 Redis 进程,导致 Redis 出现延迟,从而影响 Redis 的整体性能。因此我们需要限制 Redis 的内存大小为一个固定的值,当 Redis 的运行到达此值时会触发内存淘汰策略,内存淘汰策略在 Redis 4.0 之后有 8 种

noeviction:不淘汰任何数据,当内存不足时,新增操作会报错,Redis 默认内存淘汰策略;

allkeys-lru:淘汰整个键值中最久未使用的键值;

allkeys-random:随机淘汰任意键值;

volatile-lru:淘汰所有设置了过期时间的键值中最久未使用的键值;

volatile-random:随机淘汰设置了过期时间的任意键值;

volatile-ttl:优先淘汰更早过期的键值。

在 Redis 4.0 版本中又新增了 2 种淘汰策略:

volatile-lfu:淘汰所有设置了过期时间的键值中,最少使用的键值;

allkeys-lfu:淘汰整个键值中最少使用的键值。

其中 allkeys-xxx 表示从所有的键值中淘汰数据,而 volatile-xxx 表示从设置了过期键的键值中淘汰数据。

我们可以根据实际的业务情况进行设置,默认的淘汰策略不淘汰任何数据,在新增时会报错。

10.使用物理机而非虚拟机

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpdsfx.html