叶聪:朋友圈背后的计算机视觉技术与应用 (4)

刚才讲的是1比1的人脸合成,除此之外还有用于大型场所管理的1:N的。大家如果有机会,如果去深圳可以去腾讯的滨海大厦参观一下,整套系统都是用这个搭建的。另外我们提供针对场景的云智智能视频管理平台。同时提供设备管理以及视频监控、对外接口等一整套服务。

img

再来说下文字OCR,后面冀博士会详细的介绍这部分。目前我们能使用的领域也非常广泛,包括名片识别,传单识别,快递单识别等等。到了技能进阶这个部分,很多人觉得做AI并不需要做算法,其实不然。首先从有想法到落地分非常多的环节。算法是非常重要的,只是相关性没有那么强。从AI算法的角度来讲,首先要打好数学基础,若想继续发展还需要积累一定的算法知识。同时锻炼自己对最新算法学术成果吸收能力,读论文实现算法,整套技能的提高。

这就要求在对算法一定要有了解的同时,要对算法有比较强的封装能力。有了一个算法怎样去封装,让它根据场景达到最优的效果。除此之外还可以做AI产品开发和应用,但这就要求对目标的AI应用场景比较了解。用户什么样,他们对于AI产品的需求是怎么样的,怎样打磨产品让他们可以简单的使用复杂的这些技术。这一整套其实都需要很多的思考。

六、技能进阶建议

img

如果我们在 AI 这个方向上想有所进步的话,我们应该怎么做?右边有一个金字塔,并不是说AI算法是它们的最高级。只是想表达如果想要做成这件事,需要的整个团队的大小,首先要有AI算法的专家,同时要有更多工程实践的人,然后还要有更多的产品开发人员把它打磨成产品。这点上来讲像亚马逊的公司做得就非常好,每次都会寻找一个场景然后去营造场景做AI,而不是单纯从技术角度出发。

算法研究方面我们要做什么?首先是要打好比较强的数学基础。因为机器学习中间大量的用到了比大学高等数学更复杂的数学知识,这些知识需要大家早做研究打好基础,这就需要读很多论文。同时还要锻炼自己对新的学术成果的理解和吸收能力,像刚才提到了一个神经网络图像的分类问题,实际上,短短的十年时间实现了那么多不同网络的进化,每一个新的网络提出了,甚至还没有发表,只是在预发表库里面,大家就要很快的去吸收理解它,想把它转化成可以运行的模型,这个是要反复锻炼的。

第二块是工程实现方面,如果想从事这方面首先要加强自己逻辑算法封装的能力,尽量锻炼自己对模型的训练和优化能力,这块会需要大家把一个设计好的算法给落实到代码上,不断的去调整优化实现最好的结果,这个过程也是需要反复磨炼的。

最后一个方向是产品应用,这个首先大家要有一定的开发能力,不管是移动开发还是 Web 开发,同时要提升自己 AI 产品场景的理解和应用。实际上很多AI产品跟传统的产品是有很大的理解上的区别,大家可能要更新自己的这种想法,多去看一些 AI 产品目前是怎么做的,有没有好的点子,多去试用体会。同时如果我们想把一个 AI 的模型变成百万级、千万级用户使用的流行产品,我们还需要有系统构建能力和优化能力。

img

所以在这三个领域都可以思考。关于怎么去学习计算机视觉的一些知识,这里有一些资料。首先斯坦福大学的一些课程是非常好的,可以利用这个作为切入点,把关键的知识点搞懂。如果不喜欢看电脑的话也可以看其他的几本书。都是我觉得不错的不同的作者写的书。右边是一些比较常见的,每天都会用到。底层还有一些打包好的更高级的书。

Q&A

Q:在视觉这块的话前期讲过焦躁问题。如果是人为的加入噪音的话,处理的话是不是特别麻烦?它的效果和原对比有什么区别?

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpjwxf.html