分布式事务解决方案以及 .Net Core 下的实现(上) (3)

在我们的业务场景下,航班预订、租车、和酒店预订没有依赖关系,可以并行处理,但对于我们的客户来说,只在所有预订成功后一次付费更加友好。 那么这四个服务的事务关系可以用下图表示:

将行程规划请求的数据结构实现为有向非循环图恰好合适。 图的根是saga启动任务,叶是saga结束任务。

Parallel Saga

如上所述,航班预订,租车和酒店预订可以并行处理。但是这样做会造成另一个问题:如果航班预订失败,而租车正在处理怎么办?我们不能一直等待租车服务回应, 因为不知道需要等多久。

最好的办法是再次发送租车请求,获得回应,以便我们能够继续补偿操作。但如果租车服务永不回应,我们可能需要采取回退措施,比如手动干预。

超时的预订请求可能最后仍被租车服务收到,这时服务已经处理了相同的预订和取消请求。

image.png

因此,服务的实现必须保证补偿请求执行以后,再次收到的对应事务请求无效。 Caitie McCaffrey在她的演讲Distributed Sagas: A Protocol for Coordinating Microservices中把这个称为可交换的补偿请求 (commutative compensating request)。

分布式saga架构

分布式的Saga借鉴了zipkin的思想,Omega就是类似探针的形式,上报saga事件,然后Alpha是属于Saga的ProcessManager.也就是协调器的东西。

alpha充当协调者的角色,主要负责对事务的事件进行持久化存储以及协调子事务的状态,使其得以最终与全局事务的状态保持一致。

omega是微服务中内嵌的一个agent,负责对网络请求进行拦截并向alpha上报事务事件,并在异常情况下根据alpha下发的指令执行相应的补偿操作。

接下来我们看下Omega的内部实现

omega是微服务中内嵌的一个agent。当服务收到请求时,omega会将其拦截并从中提取请求信息中的全局事务id作为其自身的全局事务id(即Saga事件id),并提取本地事务id作为其父事务id。在预处理阶段,alpha会记录事务开始的事件;在后处理阶段,alpha会记录事务结束的事件。因此,每个成功的子事务都有一一对应的开始及结束事件。

我们再看下 他们是如何通信的

服务间通信的流程与Zipkin的类似。在服务生产方,omega会拦截请求中事务相关的id来提取事务的上下文。在服务消费方,omega会在请求中注入事务相关的id来传递事务的上下文。通过服务提供方和服务消费方的这种协作处理,子事务能连接起来形成一个完整的全局事务。

image.png

借助zipkin的思想就可以让整一个事务组形成一个链式结构。

image.png

Saga 具体处理流程

Saga处理场景是要求相关的子事务提供事务处理函数同时也提供补偿函数。Saga协调器alpha会根据事务的执行情况向omega发送相关的指令,确定是否向前重试或者向后恢复。

成功场景
成功场景下,每个事务都会有开始和有对应的结束事件。

异常场景
异常场景下,omega会向alpha上报中断事件,然后alpha会向该全局事务的其它已完成的子事务发送补偿指令,确保最终所有的子事务要么都成功,要么都回滚。

image.png

超时场景 (需要调整)
超时场景下,已超时的事件会被alpha的定期扫描器检测出来,与此同时,该超时事务对应的全局事务也会被中断。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpppjx.html