正则化方法:L1和L2 regularization、数据集扩增、dropout (3)

  既然这样,收集更多的数据不就行啦?如果能够收集更多可以用的数据,当然好。但是很多时候,收集更多的数据意味着需要耗费更多的人力物力,有弄过人工标注的同学就知道,效率特别低,简直是粗活。

  所以,可以在原始数据上做些改动,得到更多的数据,以图片数据集举例,可以做各种变换,如:

将原始图片旋转一个小角度

添加随机噪声

一些有弹性的畸变(elastic distortions),论文《Best practices for convolutional neural networks applied to visual document analysis》对MNIST做了各种变种扩增。

截取(crop)原始图片的一部分。比如DeepID中,从一副人脸图中,截取出了100个小patch作为训练数据,极大地增加了数据集。感兴趣的可以看《Deep learning face representation from predicting 10,000 classes》.

更多数据意味着什么?

  用50000个MNIST的样本训练SVM得出的accuracy94.48%,用5000个MNIST的样本训练NN得出accuracy为93.24%,所以更多的数据可以使算法表现得更好。在机器学习中,算法本身并不能决出胜负,不能武断地说这些算法谁优谁劣,因为数据对算法性能的影响很大。

正则化方法:L1和L2 regularization、数据集扩增、dropout

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpsdgd.html