机器学习之LinearRegression与Logistic Regression逻辑斯蒂回归(三) (2)

# 对数据集进行拆分,得到训练集和测试集 from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(data,target,test_size=0.2,random_state=1) #采用逻辑斯蒂回归模型与KNN logistic = LogisticRegression() knn = KNeighborsClassifier(n_neighbors=5) #对knn与逻辑斯蒂进行训练 logistic.fit(X_train,y_train) y1_ = logistic.predict(X_test) knn.fit(X_train,y_train) y2_ = knn.predict(X_test)

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpsdzy.html