各大厂分布式链路跟踪系统架构对比 (4)

    因为 Brave 的注入需要依赖底层框架提供相关接口,因此并不需要对框架有一个全面的了解,只需要知道能在什么地方注入,能够在注入的时候取得什么数据就可以了。就像上面的例子,我们根本不需要知道 MySQL 的 JDBC Driver 是如何实现的也可以做到拦截 SQL 的能力。但是 Pinpoint 就不然,因为 Pinpoint 几乎可以在任何地方注入任何代码,这需要开发人员对所需注入的库的代码实现有非常深入的了解,通过查看其 MySQL 和 Http Client 插件的实现就可以洞察这一点,当然这也从另外一个层面说明 Pinpoint 的能力确实可以非常强大,而且其默认实现的很多插件已经做到了非常细粒度的拦截。
    针对底层框架没有公开 API 的时候,其实 Brave 也并不完全无计可施,我们可以采取 AOP 的方式,一样能够将相关拦截注入到指定的代码中,而且显然 AOP 的应用要比字节码注入简单很多。
    以上这些直接关系到实现一个监控的成本,在 Pinpoint 的官方技术文档中,给出了一个参考数据。如果对一个系统集成的话,那么用于开发 Pinpoint 插件的成本是 100,将此插件集成入系统的成本是 0;但对于 Brave,插件开发的成本只有 20,而集成成本是 10。从这一点上可以看出官方给出的成本参考数据是 5:1。但是官方又强调了,如果有 10 个系统需要集成的话,那么总成本就是 10 * 10 + 20 = 120,就超出了 Pinpoint 的开发成本 100,而且需要集成的服务越多,这个差距就越大。

    从短期目标来看,Pinpoint 确实具有压倒性的优势:无需对项目代码进行任何改动就可以部署探针、追踪数据细粒化到方法调用级别、功能强大的用户界面以及几乎比较全面的 Java 框架支持。但是长远来看,学习 Pinpoint 的开发接口,以及未来为不同的框架实现接口的成本都还是个未知数。相反,掌握 Brave 就相对容易,而且 Zipkin 的社区更加强大,更有可能在未来开发出更多的接口。在最坏的情况下,我们也可以自己通过 AOP 的方式添加适合于我们自己的监控代码,而并不需要引入太多的新技术和新概念。而且在未来业务发生变化的时候,Pinpoint 官方提供的报表是否能满足要求也不好说,增加新的报表也会带来不可以预测的工作难度和工作量。

    最后还要考虑日志收集(直接发送、记录到本地再上传)、日志接收(消息队列,直接进入ElasticSearch)、数据清洗(Logstach、Storm、SparkStreaming)、日志存储(Mysql、Hbase、ElasticSearch)、页面展示(自研还是直接用第三方的)。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpssyy.html