JVM读书笔记之垃圾收集与内存分配 (2)

  在根搜索算法中不可达的对象,也并非是"非死不可"的,这时候它们暂时处于"缓刑"阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行根搜索后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选。筛选条件是此对象是否有必要执行finalize方法(对象未覆盖finalize方法或finalize方法已被调用,都视为没有必要执行)。

  如果这个对象被判定为有必要执行finalize方法,那么这个对象将会被放置在一个名为F-Queue的队列中,并在稍后由一条由虚拟机自动建立的、低优先级Finalizer线程去执行。finalize方法是对象逃脱死亡命运最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize中成功拯救自己--只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或对象的成员变量,那在第二次标记时它将被移除出"即将回收"的集合;如何对象这时候还没有逃脱,那它就真的离死不远了。

2.5 回收方法区

  永久代的垃圾收集主要回收两部分内容:废弃常量无用的类

废弃常量

  回收废弃常量与回收Java堆中的对象非常类似。

无用的类

  类需要同时满足下面3个条件才能算是"无用的类":

该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例;

加载该类的ClassLoader已经被回收;

该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

  虚拟机可以对满足上述3个条件的无用类进行回收,仅仅是可以,而不是必然就会回收。在大量使用反射、动态代理、CGLib等bytecode场景,以及动态生成JSP和OSGi这类频繁自定义ClassLoader的场景都需要虚拟机具备类卸载的功能,以保证永久代不会溢出。

3 垃圾收集算法 3.1 标记-清除算法

  最基础的收集算法,首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象,

效率问题,标记和清除过程的效率都不高;

空间问题,标记清除之后会产生大量不连续的内存碎片,可能会导致在需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。

3.2 复制算法

  它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

不用考虑内存碎片等复杂情况,实现简单运行高效;

代价是将内存缩小为原来的一半。

  现在的商业虚拟机都采用这种收集算法来回收新生代,将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地拷贝到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor的空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%,只有10%的内存会被浪费。当Survivor空间不够用时,需要依赖其他内存(老年代)进行分配担保,即如果另一块Survivor空间没有足够的空间存放上一次新生代收集下来的存活对象,这些对象将直接通过分配担保机制进入老年代。

3.3 标记-整理算法

  标记过程任然与"标记-清除"算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。老年代一般使用该算法。

3.4 分代收集算法

  当前商业虚拟机的垃圾收集都采用"分代收集"(Generational Collection)算法,根据对象的存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,选用复制算法;而老年代使用"标记-清理"或"标记-整理"算法。

4 垃圾收集器

  本文讨论的收集器基于SunHotSpot虚拟机1.6版Update22,这个虚拟机包含的所有收集器如下图所示。图中展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们可以搭配使用。

JVM读书笔记之垃圾收集与内存分配

4.1 Serial收集器

  一个单线程收集器,不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集时,必须暂停其他所有的工作线程(Stop The World),直到它收集结束。
  虚拟机运行在Client模式下的默认新生代收集器。它也有着优于其它收集器的地方:简单而高效(与其它收集器的单线程比)。在用户的桌面应用场景中,分配给虚拟机管理的内存一般来说不会很大,收集几十兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本不会再大了),停顿时间完全可以控制在几十毫秒最多一百毫秒以内,只要不是频繁发生是可以接受的。

4.2 ParNew收集器

Serial收集器的多线程版本,并行,新生代,采用复制算法;

Server模式下虚拟机中首选的新生代收集器;

4.3 Parallel Scavenge收集器

新生代收集器,并行,采用复制算法;

目标是达到一个可控制的吞吐量(Throughput),所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值;

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpswpw.html