JavaScript 数据结构与算法之美 - 归并排序、快速排序、希尔排序、堆排序 (4)

由于交换后新的堆顶 R[1] 可能违反堆的性质,因此需要对当前无序区 (R1, R2 ...... Rn-1) 调整为新堆,然后再次将 R[1] 与无序区最后一个元素交换,得到新的无序区 (R1, R2 .... Rn-2) 和新的有序区 (Rn-1, Rn)。不断重复此过程,直到有序区的元素个数为 n - 1,则整个排序过程完成。

实现

// 堆排序 const heapSort = array => { console.time('堆排序耗时'); // 初始化大顶堆,从第一个非叶子结点开始 for (let i = Math.floor(array.length / 2 - 1); i >= 0; i--) { heapify(array, i, array.length); } // 排序,每一次 for 循环找出一个当前最大值,数组长度减一 for (let i = Math.floor(array.length - 1); i > 0; i--) { // 根节点与最后一个节点交换 swap(array, 0, i); // 从根节点开始调整,并且最后一个结点已经为当前最大值,不需要再参与比较,所以第三个参数为 i,即比较到最后一个结点前一个即可 heapify(array, 0, i); } console.timeEnd('堆排序耗时'); return array; }; // 交换两个节点 const swap = (array, i, j) => { let temp = array[i]; array[i] = array[j]; array[j] = temp; }; // 将 i 结点以下的堆整理为大顶堆,注意这一步实现的基础实际上是: // 假设结点 i 以下的子堆已经是一个大顶堆,heapify 函数实现的 // 功能是实际上是:找到 结点 i 在包括结点 i 的堆中的正确位置。 // 后面将写一个 for 循环,从第一个非叶子结点开始,对每一个非叶子结点 // 都执行 heapify 操作,所以就满足了结点 i 以下的子堆已经是一大顶堆 const heapify = (array, i, length) => { let temp = array[i]; // 当前父节点 // j < length 的目的是对结点 i 以下的结点全部做顺序调整 for (let j = 2 * i + 1; j < length; j = 2 * j + 1) { temp = array[i]; // 将 array[i] 取出,整个过程相当于找到 array[i] 应处于的位置 if (j + 1 < length && array[j] < array[j + 1]) { j++; // 找到两个孩子中较大的一个,再与父节点比较 } if (temp < array[j]) { swap(array, i, j); // 如果父节点小于子节点:交换;否则跳出 i = j; // 交换后,temp 的下标变为 j } else { break; } } };

测试

const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]; console.log('原始array:', array); const newArr = heapSort(array); console.log('newArr:', newArr); // 原始 array:  [4, 6, 8, 5, 9, 1, 2, 5, 3, 2] // 堆排序耗时: 0.15087890625ms // newArr:   [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]

分析

第一,堆排序是原地排序算法吗 ?
整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。

第二,堆排序是稳定的排序算法吗 ?
因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。
所以,堆排序是不稳定的排序算法。

第三,堆排序的时间复杂度是多少 ?
堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(nlogn),所以,堆排序整体的时间复杂度是 O(nlogn)。
最佳情况:T(n) = O(nlogn)。
最差情况:T(n) = O(nlogn)。
平均情况:T(n) = O(nlogn)。

动画

6. 排序算法的复杂性对比

复杂性对比

名称 平均 最好 最坏 空间 稳定性 排序方式
归并排序   O(n log n)   O(n log n)   O(n log n)   O(n)   Yes   Out-place  
快速排序   O(n log n)   O(n log n)   O(n2)   O(logn)   No   In-place  
希尔排序   O(n log n)   O(n log2 n)   O(n log2 n)   O(1)   No   In-place  
堆排序   O(n log n)   O(n log n)   O(n log n)   O(1)   No   In-place  

算法可视化工具

算法可视化工具 algorithm-visualizer
算法可视化工具 algorithm-visualizer 是一个交互式的在线平台,可以从代码中可视化算法,还可以看到代码执行的过程。

效果如下图。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwgff.html