2020你还不会Java8新特性? (9)

同一性:对于任何一条并行线路来说 ,需要满足a == combiner.apply(a, supplier.get())。举例来说:
(List list1,List list2 -> {list1.addAll(list2);return list1})
结合性: 下方有举例。

Collector收集器的实现源码详解 /** * A <a href="package-summary.html#Reduction">mutable reduction operation</a> that * accumulates input elements into a mutable result container, optionally transforming * the accumulated result into a final representation after all input elements * have been processed. Reduction operations can be performed either sequentially * or in parallel. Collector作为一个接口。它是一个可变的汇聚操作,将输入元素累计到一个可变的结果容器中;它会在所有元素都处理 完毕后将累计的结果作为一个最终的表示(这是一个可选操作);它支持串行与并行两种方式执行。(并不是说并行一定比串行快。) * <p>Examples of mutable reduction operations include: * accumulating elements into a {@code Collection}; concatenating * strings using a {@code StringBuilder}; computing summary information about * elements such as sum, min, max, or average; computing "pivot table" summaries * such as "maximum valued transaction by seller", etc. The class {@link Collectors} * provides implementations of many common mutable reductions. Collects本身提供了关于Collectoe的常见汇聚实现,Collectors本身实际上是一个工厂。 * <p>A {@code Collector} is specified by four functions that work together to * accumulate entries into a mutable result container, and optionally perform * a final transform on the result. They are: <ul> * <li>creation of a new result container ({@link #supplier()})</li> * <li>incorporating a new data element into a result container ({@link #accumulator()})</li> * <li>combining two result containers into one ({@link #combiner()})</li> * <li>performing an optional final transform on the container ({@link #finisher()})</li> * </ul> Collector 包含了4个参数 * <p>Collectors also have a set of characteristics, such as * {@link Characteristics#CONCURRENT}, that provide hints that can be used by a * reduction implementation to provide better performance. * * <p>A sequential implementation of a reduction using a collector would * create a single result container using the supplier function, and invoke the * accumulator function once for each input element. A parallel implementation * would partition the input, create a result container for each partition, * accumulate the contents of each partition into a subresult for that partition, * and then use the combiner function to merge the subresults into a combined * result. 举例说明: 1,2, 3, 4 四个部分结果。 1,2 -》 5 5,3 -》 6 6,4 -》 6 ### 同一性和结合性的解析: * <p>To ensure that sequential and parallel executions produce equivalent * results, the collector functions must satisfy an <em>identity</em> and an * <a href="package-summary.html#Associativity">associativity</a> constraints. 为了确保串行和并行的结果一致,需要进行额外的处理。必须要满足两个约束。 identity 同一性 associativity 结合性 * <p>The identity constraint says that for any partially accumulated result, * combining it with an empty result container must produce an equivalent * result. That is, for a partially accumulated result {@code a} that is the * result of any series of accumulator and combiner invocations, {@code a} must * be equivalent to {@code combiner.apply(a, supplier.get())}. 同一性: 对于任何一条并行线路来说,需要满足a == combiner.apply(a, supplier.get()) * <p>The associativity constraint says that splitting the computation must * produce an equivalent result. That is, for any input elements {@code t1} * and {@code t2}, the results {@code r1} and {@code r2} in the computation * below must be equivalent: * <pre>{@code * A a1 = supplier.get(); 串行: * accumulator.accept(a1, t1); 第一个参数,每次累加的中间结果。 第二个参数,下一个要处理的参数 * accumulator.accept(a1, t2); * R r1 = finisher.apply(a1); // result without splitting * * A a2 = supplier.get(); 并行: * accumulator.accept(a2, t1); 第一个参数,每次累加的中间结果。 第二个参数,下一个要处理的参数 * A a3 = supplier.get(); * accumulator.accept(a3, t2); * R r2 = finisher.apply(combiner.apply(a2, a3)); // result with splitting * } </pre> 结合性: 如上例。 最终要求 r1 == r2 * <p>For collectors that do not have the {@code UNORDERED} characteristic, * two accumulated results {@code a1} and {@code a2} are equivalent if * {@code finisher.apply(a1).equals(finisher.apply(a2))}. For unordered * collectors, equivalence is relaxed to allow for non-equality related to * differences in order. (For example, an unordered collector that accumulated * elements to a {@code List} would consider two lists equivalent if they * contained the same elements, ignoring order.) 对于无序的收集器来说,等价性就被放松了,会考虑到顺序上的区别对应的不相等性。 两个集合中包含了相同的元素,但是忽略了顺序。这种情况下两个的集合也是等价的。 ### collector复合与注意事项: * <p>Libraries that implement reduction (汇聚) based on {@code Collector}, such as * {@link Stream#collect(Collector)}, must adhere to the following constraints: * <ul> * <li>The first argument passed to the accumulator function, both * arguments passed to the combiner function, and the argument passed to the * finisher function must be the result of a previous invocation of the * result supplier, accumulator, or combiner functions.</li> * <li>The implementation should not do anything with the result of any of * the result supplier, accumulator, or combiner functions other than to * pass them again to the accumulator, combiner, or finisher functions, * or return them to the caller of the reduction operation.</li> 具体的实现来说,不应该对中间返回的结果进行额外的操作。除了最终的返回的结果。 * <li>If a result is passed to the combiner or finisher * function, and the same object is not returned from that function, it is * never used again.</li> 如果一个结果被传递给combiner or finisher,但是并没有返回一个你传递的对象,说明你生成了一个新的结果或者创建了新的对象。这个结果就不会再被使用了。 * <li>Once a result is passed to the combiner or finisher function, it * is never passed to the accumulator function again.</li> 一旦一个结果被传递给了 combiner or finisher 函数,他就不会再被传递给了accumulator函数了。 * <li>For non-concurrent collectors, any result returned from the result * supplier, accumulator, or combiner functions must be serially * thread-confined. This enables collection to occur in parallel without * the {@code Collector} needing to implement any additional synchronization. * The reduction implementation must manage that the input is properly * partitioned, that partitions are processed in isolation, and combining * happens only after accumulation is complete.</li> 线程和线程之间的处理都是独立的,最终结束时再进行合并。 * <li>For concurrent collectors, an implementation is free to (but not * required to) implement reduction concurrently. A concurrent reduction * is one where the accumulator function is called concurrently from * multiple threads, using the same concurrently-modifiable result container, * rather than keeping the result isolated during accumulation. * A concurrent reduction should only be applied if the collector has the * {@link Characteristics#UNORDERED} characteristics or if the * originating data is unordered.</li> 如果不是并发收集器,4个线程会生成4个中间结果。 是并发收集器的话,4个线程会同时调用一个结果容器。 * </ul> * * <p>In addition to the predefined implementations in {@link Collectors}, the * static factory methods {@link #of(Supplier, BiConsumer, BinaryOperator, Characteristics...)} * can be used to construct collectors. For example, you could create a collector * that accumulates widgets into a {@code TreeSet} with: * * <pre>{@code * Collector<Widget, ?, TreeSet<Widget>> intoSet = * Collector.of(TreeSet::new, TreeSet::add, * (left, right) -> { left.addAll(right); return left; }); * }</pre> 通过Collector.of(传进一个新的要操作的元素,结果容器处理的步骤,多线程处理的操作) 将流中的每个Widget 添加到TreeSet中 * (This behavior is also implemented by the predefined collector * {@link Collectors#toCollection(Supplier)}). * * @apiNote * Performing a reduction operation with a {@code Collector} should produce a * result equivalent to: * <pre>{@code * R container = collector.supplier().get(); * for (T t : data) * collector.accumulator().accept(container, t); * return collector.finisher().apply(container); * }</pre> api的说明: collector的finisher汇聚的实现过程。 * <p>However, the library is free to partition the input, perform the reduction * on the partitions, and then use the combiner function to combine the partial * results to achieve a parallel reduction. (Depending on the specific reduction * operation, this may perform better or worse, depending on the relative cost * of the accumulator and combiner functions.) 性能取决于accumulator and combiner的代价。 也就是说 并行流 并不一定比串行流效率高。 * <p>Collectors are designed to be <em>composed</em>; many of the methods * in {@link Collectors} are functions that take a collector and produce * a new collector. For example, given the following collector that computes * the sum of the salaries of a stream of employees: * <pre>{@code * Collector<Employee, ?, Integer> summingSalaries * = Collectors.summingInt(Employee::getSalary)) * }</pre> 搜集器是可以组合的: take a collector and produce a new collector. 搜集器的实现过程。 如 员工的工资的求和。 * If we wanted to create a collector to tabulate the sum of salaries by * department, we could reuse the "sum of salaries" logic using * {@link Collectors#groupingBy(Function, Collector)}: * <pre>{@code * Collector<Employee, ?, Map<Department, Integer>> summingSalariesByDept * = Collectors.groupingBy(Employee::getDepartment, summingSalaries); * }</pre> 如果我们想要新建一个搜集器,我们可以复用之前的搜集器。 实现过程。 * @see Stream#collect(Collector) * @see Collectors * * @param <T> the type of input elements to the reduction operation <T> 代表 流中的每一个元素的类型。 * @param <A> the mutable accumulation type of the reduction operation (often * hidden as an implementation detail) <A> 代表 reduction操作的可变容器的类型。表示中间操作生成的结果的类型(如ArrayList)。 * @param <R> the result type of the reduction operation <R> 代表 结果类型 * @since 1.8 */ public interface Collector<T, A, R>{ /** * A function that creates and returns a new mutable result container. * A就代表每一次返回结果的类型 * @return a function which returns a new, mutable result container */ Supplier<A> supplier(); // 提供一个结果容器 /** * A function that folds a value into a mutable result container. * A代表中间操作返回结果的类型。 T是下一个代操作的元素的类型。 * @return a function which folds a value into a mutable result container */ BiConsumer<A, T> accumulator(); //不断的向结果容器中添加元素。 /** * A function that accepts two partial results and merges them. The * combiner function may fold state from one argument into the other and * return that, or may return a new result container. * A 中间操作返回结果的类型。 * @return a function which combines two partial results into a combined * result */ BinaryOperator<A> combiner(); //在多线程中 合并 部分结果。 /** 和并行流紧密相关的 接收两个结果,将两个部分结果合并到一起。 combiner函数,有4个线程同时去执行,那么就会有生成4个部分结果。 举例说明: 1,2, 3, 4 四个部分结果。 1,2 -》 5 5,3 -》 6 6,4 -》 6 1,2合并返回5 属于return a new result container. 6,4合并返回6,属于The combiner function may fold state from one argument into the other and return that。 */ /** * Perform the final transformation from the intermediate accumulation type * {@code A} to the final result type {@code R}. *R 是最终返回结果的类型。 * <p>If the characteristic {@code IDENTITY_TRANSFORM} is * set, this function may be presumed to be an identity transform with an * unchecked cast from {@code A} to {@code R}. * * @return a function which transforms the intermediate result to the final * result */ Function<A, R> finisher(); // 合并中间的值,给出返回值。 /** * Returns a {@code Set} of {@code Collector.Characteristics} indicating * the characteristics of this Collector. This set should be immutable. * * @return an immutable set of collector characteristics */ Set<Characteristics> characteristics(); //特征的集合 /** * Returns a new {@code Collector} described by the given {@code supplier}, * {@code accumulator}, and {@code combiner} functions. The resulting * {@code Collector} has the {@code Collector.Characteristics.IDENTITY_FINISH} * characteristic. * * @param supplier The supplier function for the new collector * @param accumulator The accumulator function for the new collector * @param combiner The combiner function for the new collector * @param characteristics The collector characteristics for the new * collector * @param <T> The type of input elements for the new collector * @param <R> The type of intermediate accumulation result, and final result, * for the new collector * @throws NullPointerException if any argument is null * @return the new {@code Collector} */ public static<T, R> Collector<T, R, R> of(Supplier<R> supplier, BiConsumer<R, T> accumulator, BinaryOperator<R> combiner, Characteristics... characteristics) { Objects.requireNonNull(supplier); Objects.requireNonNull(accumulator); Objects.requireNonNull(combiner); Objects.requireNonNull(characteristics); Set<Characteristics> cs = (characteristics.length == 0) ? Collectors.CH_ID : Collections.unmodifiableSet(EnumSet.of(Collector.Characteristics.IDENTITY_FINISH, characteristics)); return new Collectors.CollectorImpl<>(supplier, accumulator, combiner, cs); } /** * Returns a new {@code Collector} described by the given {@code supplier}, * {@code accumulator}, {@code combiner}, and {@code finisher} functions. * * @param supplier The supplier function for the new collector * @param accumulator The accumulator function for the new collector * @param combiner The combiner function for the new collector * @param finisher The finisher function for the new collector * @param characteristics The collector characteristics for the new * collector * @param <T> The type of input elements for the new collector * @param <A> The intermediate accumulation type of the new collector * @param <R> The final result type of the new collector * @throws NullPointerException if any argument is null * @return the new {@code Collector} */ public static<T, A, R> Collector<T, A, R> of(Supplier<A> supplier, BiConsumer<A, T> accumulator, BinaryOperator<A> combiner, Function<A, R> finisher, Characteristics... characteristics) { Objects.requireNonNull(supplier); Objects.requireNonNull(accumulator); Objects.requireNonNull(combiner); Objects.requireNonNull(finisher); Objects.requireNonNull(characteristics); Set<Characteristics> cs = Collectors.CH_NOID; if (characteristics.length > 0) { cs = EnumSet.noneOf(Characteristics.class); Collections.addAll(cs, characteristics); cs = Collections.unmodifiableSet(cs); } return new Collectors.CollectorImpl<>(supplier, accumulator, combiner, finisher, cs); } /** * Characteristics indicating properties of a {@code Collector}, which can * be used to optimize reduction implementations. */ enum Characteristics { // 特征 /** * Indicates that this collector is <em>concurrent</em>, meaning that * the result container can support the accumulator function being * called concurrently with the same result container from multiple * threads. * 并发的,同一个结果容器可以由多个线程同时调用。 * <p>If a {@code CONCURRENT} collector is not also {@code UNORDERED}, * then it should only be evaluated concurrently if applied to an * unordered data source. 如果不是UNORDERED。只能用于无序的数据源。 如果不加CONCURRENT,还是可以操作并行流。但是操作的不是一个结果容器,而是多个结果容器。则需要调用finisher. 如果加了CONCURRENT,则是多个线程操作同一结果容器。 则无需调用finisher. */ CONCURRENT, /** * Indicates that the collection operation does not commit to preserving * the encounter order of input elements. (This might be true if the * result container has no intrinsic order, such as a {@link Set}.) 收集操作并不保留顺序。 */ UNORDERED, /** * Indicates that the finisher function is the identity function and * can be elided. If set, it must be the case that an unchecked cast * from A to R will succeed. 如果用和这个参数,表示 Finish函数就是 identity函数。 并且转换一定要是成功的。 */ IDENTITY_FINISH } } Java8(4)(五)收集器比较器用法详解及源码剖析 收集器用法详解与多级分组和分区 为什么在collectors类中定义一个静态内部类? static class CollectorImpl<T, A, R> implements Collector<T, A, R>

设计上,本身就是一个辅助类,是一个工厂。作用是给开发者提供常见的收集器实现。提供的方法都是静态方法,可以直接调用。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwgpf.html