Sharding-JDBC 快速入门第一课 (3)

41 位的时间戳可以容纳的毫秒数是 2 的 41 次幂,一年所使用的毫秒数是:365 * 24 * 60 * 60 * 1000。通过计算可知:结果约等于 69.73 年。Apache ShardingSphere的雪花算法的时间纪元从2016年11月1日零点开始,可以使用到2086年,相信能满足绝大部分系统的要求。

工作进程位(10bit)

该标志在 Java 进程内是唯一的,如果是分布式应用部署应保证每个工作进程的 id 是不同的。该值默认为 0,可通过属性设置。

序列号位(12bit)

该序列是用来在同一个毫秒内生成不同的 ID。如果在这个毫秒内生成的数量超过 4096 (2的12次幂),那么生成器会等待到下个毫秒继续生成。

雪花算法主键的详细结构见下图:

Sharding-JDBC 快速入门第一课

2.1.2.  使用规范

下面列出已明确可支持的SQL种类以及已明确不支持的SQL种类,尽量让使用者避免踩坑。 

支持项

路由至单数据节点

100%全兼容(目前仅MySQL,其他数据库完善中) 

路由至多数据节点

全面支持DML、DDL、DCL、TCL和部分DAL。支持分页、去重、排序、分组、聚合、关联查询(不支持跨库关联)。 

不支持项

路由至多数据节点

不支持CASE WHEN、HAVING、UNION (ALL),有限支持子查询。 

https://shardingsphere.apache.org/document/current/cn/features/sharding/use-norms/sql/ 

2.2.  读写分离

Sharding-JDBC 快速入门第一课

 

读写分离虽然可以提升系统的吞吐量和可用性,但同时也带来了数据不一致的问题。 这包括多个主库之间的数据一致性,以及主库与从库之间的数据一致性的问题。 并且,读写分离也带来了与数据分片同样的问题,它同样会使得应用开发和运维人员对数据库的操作和运维变得更加复杂。 下图展现了将分库分表与读写分离一同使用时,应用程序与数据库集群之间的复杂拓扑关系。

Sharding-JDBC 快速入门第一课

3.  示例:水平分库分片

引入maven依赖

<dependency> <groupId>org.apache.shardingsphere</groupId> <artifactId>sharding-jdbc-core</artifactId> <version>${sharding-sphere.version}</version> </dependency>

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpwywz.html