比较而言,“智慧尘埃”意义上的物联网属于工业总线的泛化。这样的产业实践自从机电一体化和工业信息化以来,实际上在工业生产中从未停止过,只是那时不叫物联网而是叫工业总线。这种意义上的物联网将因传感技术、各类局域网通信技术的发展,依据其内在的科学技术规律,坚实而稳步地向前行进,并不会因为人为的一场运动而加快发展速度。
RFID意义上的物联网,所依据的EPCglobal标准在推出时,即被定义为未来物联网的核心标准,但是该标准及其惟一的方法手段RFID电子标签所固有的局限性,使它难以真正指向物联网所提倡的智慧星球。原因在于,物和物之间的联系所能告知人们的信息是非常有限的,而物的状态与状态之间的联系,才能使人们真正挖掘事物之间普遍存在的各种联系,从而获取新的认知,获取新的智慧。
“泛在聚合”即是要实现互联网所造就的无所不在的浩瀚数据海洋,实现彼此相识意义上的聚合。这些数据既代表物,也代表物的状态,甚至代表人工定义的各类概念。数据的“泛在聚合”,将能使人们极为方便的任意检索所需的各类数据,在各种数学分析模型的帮助下,不断挖掘这些数据所代表的事务之间普遍存在的复杂联系,从而实现人类对周边世界认知能力的革命性飞跃。
数据分析概念数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
物联网环境下的数据分析在工业企业的应用随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、ERP、CAD/CAM/CAE/CAI等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。因此,工业大数据应用所面临的问题和挑战并不比互联网行业的大数据应用少,某些情况下甚至更为复杂。
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析等。
工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高,大数据分析有以下七大应用。
1.加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。福特公司是这方面的表率,他们将大数据技术应用到了福特福克斯电动车的产品创新和优化中,这款车成为了一款名副其实的“大数据电动车”。第一代福特福克斯电动车在驾驶和停车时产生大量数据。在行驶中,司机持续地更新车辆的加速度、刹车、电池充电和位置信息。这对于司机很有用,但数据也传回福特工程师那里,以了解客户的驾驶习惯,包括如何、何时以及何处充电。即使车辆处于静止状态,它也会持续将车辆胎压和电池系统的数据传送给最近的智能电话。
这种以客户为中心的大数据应用场景具有多方面的好处,因为大数据实现了宝贵的新型产品创新和协作方式。司机获得有用的最新信息,而位于底特律的工程师汇总关于驾驶行为的信息,以了解客户,制订产品改进计划,并实施新产品创新。而且,电力公司和其他第三方供应商也可以分析数百万英里的驾驶数据,以决定在何处建立新的充电站,以及如何防止脆弱的电网超负荷运转。
2.快速产品故障诊断与精确预测