自然语言处理之序列标注问题 (2)

    

自然语言处理之序列标注问题

  我们要识别出里面包含的人名、地名和机构名。如果以序列标注的角度看这个问题,我们首先得把输入序列看成一个个汉字组成的线性序列,然后我们要定义标签集合,标签集合如下(在这里的标签用什么代表不重要,重要的是它代表的含义):  

    

自然语言处理之序列标注问题

  其中,BA代表这个汉字是地址首字,MA代表这个汉字是地址中间字,EA代表这个汉字是地址的尾字;BO代表这个汉字是机构名的首字,MO代表这个汉字是机构名称的中间字,EO代表这个汉字是机构名的尾字;BP代表这个汉字是人名首字,MP代表这个汉字是人名中间字,EP代表这个汉字是人名尾字,而O代表这个汉字不属于命名实体。

    

自然语言处理之序列标注问题

  有了输入汉字序列,也有了标签集合,那么剩下的问题是训练出一个序列标注ML系统,能够对每一个汉字进行分类,假设我们已经学好了这个系统,那么就给输入句子中每个汉字打上标签集合中的标签,于是命名实体就被识别出来了,为了便于人查看,增加一个后处理步骤,把人名、地名、机构名都明确标识出来即可。

  除了上面的分词和命名实体标注,很多其他的NLP问题同样可以转换为序列标注问题,比如词性标注、CHUNK识别、句法分析、语义角色识别、关键词抽取等。

  传统解决序列标注问题的方法包括HMM/MaxEnt/CRF等,很明显RNN很快会取代CRF的主流地位,成为解决序列标注问题的标准解决方案,那么如果使用RNN来解决各种NLP基础及应用问题,我们又该如何处理呢,下面我们就归纳一下使用RNN解决序列标注问题的一般优化思路。

  对于分词、词性标注(POS)、命名实体识别(NER)这种前后依赖不会太远的问题,可以用RNN或者BiRNN处理就可以了。而对于具有长依赖的问题,可以使用LSTM、RLSTM、GRU等来处理。关于GRU和LSTM两者的性能差不多,不过对于样本数量较少时,有限考虑使用GRU(模型结构较LSTM更简单)。此外神经网络在训练的过程中容易过拟合,可以在训练过程中加入Dropout或者L1/L2正则来避免过拟合。

CRF和LSTM在序列标注上的优劣

  LSTM:像RNN、LSTM、BILSTM这些模型,它们在序列建模上很强大,它们能够capture长远的上下文信息,此外还具备神经网络拟合非线性的能力,这些都是crf无法超越的地方,对于t时刻来说,输出层yt受到隐层ht(包含上下文信息)和输入层xt(当前的输入)的影响,但是yt和其他时刻的yt`是相互独立的,感觉像是一种point wise,对当前t时刻来说,我们希望找到一个概率最大的yt,但其他时刻的yt`对当前yt没有影响,如果yt之间存在较强的依赖关系的话(例如,形容词后面一般接名词,存在一定的约束),LSTM无法对这些约束进行建模,LSTM模型的性能将受到限制。

  CRF:它不像LSTM等模型,能够考虑长远的上下文信息,它更多考虑的是整个句子的局部特征的线性加权组合(通过特征模版去扫描整个句子)。关键的一点是,CRF的模型为p(y | x, w),注意这里y和x都是序列,它有点像list wise,优化的是一个序列y = (y1, y2, …, yn),而不是某个时刻的yt,即找到一个概率最高的序列y = (y1, y2, …, yn)使得p(y1, y2, …, yn| x, w)最高,它计算的是一种联合概率,优化的是整个序列(最终目标),而不是将每个时刻的最优拼接起来,在这一点上CRF要优于LSTM。

  HMM:CRF不管是在实践还是理论上都要优于HMM,HMM模型的参数主要是“初始的状态分布”,“状态之间的概率转移矩阵”,“状态到观测的概率转移矩阵”,这些信息在CRF中都可以有,例如:在特征模版中考虑h(y1), f(yi-1, yi), g(yi, xi)等特征。

  CRF与LSTM:从数据规模来说,在数据规模较小时,CRF的试验效果要略优于BILSTM,当数据规模较大时,BILSTM的效果应该会超过CRF。从场景来说,如果需要识别的任务不需要太依赖长久的信息,此时RNN等模型只会增加额外的复杂度,此时可以考虑类似科大讯飞FSMN(一种基于窗口考虑上下文信息的“前馈”网络)。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpxjfw.html