【NLP】彻底搞懂BERT (3)

  使用transformer而不是bi-LSTM做encoder,可以有更深的层数、具有更好并行性。并且线性的Transformer比lstm更易免受mask标记影响,只需要通过self-attention减小mask标记权重即可,而lstm类似黑盒模型,很难确定其内部对于mask标记的处理方式。

提升至句子级别:

  学习句子/句对关系表示,句子级负采样。首先给定的一个句子,下一句子正例(正确词),随机采样一句负例(随机采样词),句子级上来做二分类(即判断句子是当前句子的下一句还是噪声),类似word2vec的单词级负采样。

 

【NLP】彻底搞懂BERT

 

 

 

二、BERT细则

这里主要介绍BERT的三个亮点Masked LM、transformer、sentence-level。

1. Masked Language Model

# 原本叫cloze test,是完形填空的意思。

随机mask语料中15%的token,然后将masked token 位置输出的最终隐层向量送入softmax,来预测masked token。

这样输入一个句子,每次只预测句子中大概15%的词,所以BERT训练很慢。。。(但是google设备NB。。)

【NLP】彻底搞懂BERT

而对于盖住词的特殊标记,在下游NLP任务中不存在。因此,为了和后续任务保持一致,作者按一定的比例在需要预测的词位置上输入原词或者输入某个随机的词。如:my dog is hairy

有80%的概率用“[mask]”标记来替换——my dog is [MASK]

有10%的概率用随机采样的一个单词来替换——my dog is apple

有10%的概率不做替换——my dog is hairy

 

2. Transformer —— attention is all you need

Transformer模型是2018年5月提出的,可以替代传统RNN和CNN的一种新的架构,用来实现机器翻译,论文名称是attention is all you need。无论是RNN还是CNN,在处理NLP任务时都有缺陷。CNN是其先天的卷积操作不很适合序列化的文本,RNN是其没有并行化,很容易超出内存限制(比如50tokens长度的句子就会占据很大的内存)。

下面左图是transformer模型一个结构,分成左边Nx框框的encoder和右边Nx框框的decoder,相较于RNN+attention常见的encoder-decoder之间的attention(上边的一个橙色框),还多出encoder和decoder内部的self-attention(下边的两个橙色框)。每个attention都有multi-head特征。最后,通过position encoding加入没考虑过的位置信息。

下面从multi-head attention,self-attention, position encoding几个角度介绍。

 

【NLP】彻底搞懂BERT

                     

【NLP】彻底搞懂BERT

multi-head attention:

  将一个词的vector切分成h个维度,求attention相似度时每个h维度计算。由于单词映射在高维空间作为向量形式,每一维空间都可以学到不同的特征,相邻空间所学结果更相似,相较于全体空间放到一起对应更加合理。比如对于vector-size=512的词向量,取h=8,每64个空间做一个attention,学到结果更细化。

self-attention:

  每个词位的词都可以无视方向和距离,有机会直接和句子中的每个词encoding。比如上面右图这个句子,每个单词和同句其他单词之间都有一条边作为联系,边的颜色越深表明联系越强,而一般意义模糊的词语所连的边都比较深。比如:law,application,missing,opinion。。。

position encoding:

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpypss.html