腾讯“神盾-联邦计算”平台带你翻越数据合作的重重大山 (2)

神盾联邦计算平台深度结合业务场景和需求,首创面向联邦成果分享的安全信息检索技术,解决联邦学习应用的重要隐私性问题,做到样本预处理-数据挖掘-联邦推理-联邦成果安全分享的完整、新型安全信息流。安全信息检索技术解决了联邦学习工程实践中的多方成果共享问题,填补联邦学习系统运行的最后一块短板。

安全信息检索协议基于Pohlig-Hellman交换加密技术和MPC中的不经意传输 (Oblivious Transfer) 技术,强有力保障联邦成果发送方精准分享目标客户群推理结果,全方位保护联邦成果接收方的目标客户群隐私。神盾联邦计算平台已凭借该项成果递交多项国家专利申请。

腾讯“神盾-联邦计算”平台带你翻越数据合作的重重大山

首创具语义安全性高性能同态加密技术

初次使用联邦学习系统的用户可以明显感知到,联邦学习与Spark MLlib, Tensorflow等面向扩展性的传统分布式机器学习框架的性能差异,从而对如此“低效”的联邦服务产生一些疑惑。

神盾联邦计算平台从联邦学习的核心隐私保护技术——同态加密入手优化联邦服务的性能,首创了具有语义安全性的高性能同态加密技术。在单元测试中,我们的成果计算效率相比现有的同态加密提升千倍以上;整个模型的训练耗时也可以节省87%以上。

同态加密是当前工业界广为应用的若干联邦协议中最为通用和便携的安全多方计算技术之一,它能够在保护隐私的前提下,轻易解耦数据提供方角色和计算方角色,完美契合联邦学习的面向隐私保护的分布式计算本质。

同态加密的研究吸引了广泛学者,大量的工作投入到支持运算层数深、运算类型多、安全等级高的各类同态密码研究中[9-11]。然而,受限于现代计算机处理器的性能和实际业务场景的高时效、低时延要求,即使大幅提升服务器配置的前提下,许多完备却复杂的同态密码并不能在令人满意的时间内、在足够大的数据集上、完成足够多轮的联邦建模训练,这是用户感知联邦学习与传统分布式建模系统性能差异较大的核心因素。

为了通过改进底层同态加密的方式提速联邦学习,我们借鉴了经典的对称密码Affine Cipher的群运算类型和非对称密码ElGamal的多元组密文混淆思想,全球首创随机化迭代型仿射密码 (Randomized Iterative Affine Cipher, RIAC)。我们的成果RIAC在保留了经典同态密码的运算次数隐蔽性和语义安全性的前提下,大幅提升同态运算效率,处于国内相关技术的领先梯队。神盾联邦计算平台已凭借该项成果递交多项国家专利申请。

腾讯“神盾-联邦计算”平台带你翻越数据合作的重重大山

首创地位对等的分布式安全聚合技术

在一个联邦学习系统中,数据隐私的保护依赖于其内部的各种安全子协议,例如对加法、乘法、聚合等操作的联邦子协议[13, 14]。其中,聚合技术能够在保护各参与方数据隐私的前提下,完成对分布在各方的模型更新所需参数(如梯度、残差等)、模型估计(如权重)和模型预测值等中间变量的中心化。

安全求和 (Secure Summation) 协议是聚合协议最为直观的实现之一,也是众多安全聚合技术的基准测试方案之一。

目前在学业界广泛流行的安全求和实现方案包括高效安全求和协议[15]、同态加密[10, 11]、秘密分享[16]、面向隐私保护的共识协议[17, 18]等,但在联邦协议的应用中,这些已有协议存在各种问题,包括共谋的威胁[15]、计算复杂较高[10,11,18]、精度损失[17]、完全去中心化 (full decentralization) 问题[10, 11]、动态环境问题[19]等。

遗憾的是,几乎没有求和协议针对联邦学习的这类要求做深入研究。我们首创面向隐私保护的演化式求和协议[12],以完全去中心化的结构,于无限时间内,在参与方设备频繁登入、登出的动态环境中,执行安全性好、准确率高、恢复力强的安全求和服务,作为联邦学习系统中的可靠子程序,适用于联邦学习协议中的各类安全聚合需求。在2020年4月,我们的该项成果发表在IEEE Intelligent Systems期刊上。

首创单向联邦网络策略

市面主流联邦学习产品及开源框架,均需要建模双方的网络双向互通,但这在银行等数据安全极度敏感的行业会引来网络安全担忧,如果开放了外界访问银行内部网络的入口,黑客就有可能通过扫描开放端口,伪造数据包来源IP等手段发起恶意攻击。

腾讯“神盾-联邦计算”平台带你翻越数据合作的重重大山

 

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wpywws.html