何为缓存击穿?
假如该功能在前期宣传力度比较大,或预计该功能上线后点击量比较大的话,那么在功能上线后很可能就会一瞬间大量用户来点击这个功能,因为我们前面的逻辑是首次进入该功能的用户展示协议页,我们的后台处理虽然加了redis缓存,但是新上的功能所有用户都没有点过,那么redis里就没有缓存,是不是所有用户的请求都落到数据库了?一旦瞬间流量非常大,数据库安全性就存在隐患,有被搞垮的可能。
这个问题就是可以理解为缓存击穿。(实际的缓存击穿是某个key在缓存里不存在或是失效后,某一瞬间很多请求都来访问这个key,都判定为redis里没有这个key,就都去查库。)
所以怎么解决呢?我们可以在该功能上线前,提前将需要做缓存的数据放入redis,即缓存预热。
如何预热?
将所有用户的信息都放到redis.举个栗子(也许不是最佳的),我们使用Redis的hash数据结构,key-field-value。key我们可以固定一个字符串如coderTreeHole_Agreement_Check,field我们可以用客户号(唯一),value是个标志位,用0代表没同意过协议,1代表同意过。一般在电商大促前都会对热点key进行预热,不然真的扛不住。
and,用户量很大的时候redis里的coderTreeHole_Agreement_Check这个key是不是很大?在redis集群部署模式下,这个key是不是都放在一个节点上?why?
redis3.0上加入了cluster模式,实现的redis的分布式存储,也就是说每台redis节点上存储不同的内容。在redis的每一个节点上,都有这么两个东西,一个是插槽(slot),它的的取值范围是:0-16383。还有一个就是cluster,可以理解为是一个集群管理的插件。当我们的存取的key到达的时候,redis会根据crc16的算法得出一个结果,然后把结果对16384求余数,这样每个key都会对应一个编号在0-16383之间的哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。
看了上面这段话,明白了吧。那对于这个大key而且是热点key的请求,是不是都落到某一个redis节点上了?大key会带来很多问题,篇幅原因以后再来细说,跑题了。。。
针对这个需求,你还有什么方法防治缓存击穿?
第五版 消息队列削峰填谷可以看到我们上面的设计其实都是实时对数据库进行操作的。
例如,当用户点了同意,前端就调后台的recordAgree方法将该记录记录到数据库,即这条记录是立马插入到数据库的。
如果刚上线这个功能,大量用户同时点这个功能,并发量大的话,请求走到后台,那么写库的操作就非常多,数据库连接数突然激增,数据库会顶不住吧。
所以为避免流量集中落到数据库,此时我们可以使用消息队列MQ。将插入操作的请求发往消息队列,使插入操作以一定的速率到数据库执行,使得对数据库的请求数尽量平滑,消息发给消息队列立即返回给前端成功,不用等待插库完成,用MQ实现了异步解耦,削峰填谷。
到这你是不是忍不住说设计的真赞~~
另外MQ的使用注意的点还是非常多的,如:消息队列的消息重复消费问题,顺序问题,事务消息等。
总结
对于这个需求设计到哪种程度取决于你的用户量和并发量,如果是像双十一那样,肯定是要用消息队列的,那一般小的例如,用户量1千万,日活10万,请求最集中的也就是中午9-12点,下午13-17点吧,差不多8个小时,平均一个小时1.25万,用户都来点这个功能的话,每分钟208,每秒3.5,算不上高并发,数据库完全扛得住。