这个问题真的是太复杂了,在本书这种级别的书,在后面有一整章来讨论这个问题,非常重,因此很幸运在这里可以简单的先进行简单了解,在后面的文章中详细介绍。
在上面的过拟合的图中,也在本篇文章的第一个图,通过过拟合的曲线,我们可以想一下究竟是什么样的函数能是这样的曲线,一定是这个函数好多项,其中变量的次数非常高,例如这样子的,当然这是随便一个例子,并不一定完全是这个图的图像:
对于这个还算简单的问题,用这么复杂的函数去拟合,有点过于追求拟合程度了,过犹不及,这不好。怎么办呢,假设后面四项的系数 a 接近于 0,是不是可以后面这些项对于整个函数来说贡献的值就微乎其微了,则这个函数退化为二次函数,这是我们认为拟合程度最好的情况,这就是一种正则化的方法。在后续的文章中还会介绍大量正则化的形式。总结
欠拟合和过拟合是常见机器学习中的拟合不好的情况,上面介绍了相关内容。