比如 a = 1 and b = 2 and c > 3 and d = 4 如果建立 (a,b,c,d) 顺序的索引,d 是用不到索引的,如果建立 (a,b,d,c) 的索引,则都可以用到,a,b,d 的顺序可以任意调整。
3、= 和 in 的条件可以乱序
MySQL 的查询优化器会帮你优化成索引可以识别的形式。MySQL 查询优化器会判断纠正 SQL 语句该以什么样的顺序执行效率最高,最后才生成真正的执行计划。
为什么要使用联合索引?1、 减少开销
"一个顶三个"。建一个联合索 引(col1,col2,col3),实际相当于建了 (col1),(col1,col2),(col1,col2,col3) 三个索引。
每多一个索引,都会增加写操作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!
2、 覆盖索引
对联合索引 (col1,col2,col3),如果有如下的sql: select col1,col2,col3 from test where col1=1 and col2=2。那么 MySQL 可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机 IO 操作。
减少 io 操作,特别的随机 io 其实是 dba 主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。
3、 效率高
索引列越多,通过索引筛选出的数据越少。
有 1000W 条数据的表,有如下sql: select col1,col2,col3 from table where col1=1 and col2=2 and col3=3,假设假设每个条件可以筛选出 10% 的数据。
如果只有单值索引,那么通过该索引能筛选出 1000W_10%=100w 条数据,然后再回表从 100w 条数据中找到符合 col2=2 and col3= 3 的数据,然后再排序,再分页;
如果是联合索引,通过索引筛选出 1000w_10% * 10% *10%=1w,效率提升可想而知!
索引下推索引条件下推(ICP:index condition pushdown)是 MySQL 中一个常用的优化,尤其是当 MySQL 需要从一张表里检索数据时。
ICP(index condition pushdown)是 MySQL 利用索引(二级索引)元组和筛字段在索引中的 WHERE 条件从表中提取数据记录的一种优化操作。
ICP 的思想是:存储引擎在访问索引的时候检查筛选字段在索引中的 where 条件,如果索引元组中的数据不满足推送的索引条件,那么就过滤掉该条数据记录。
ICP(优化器)尽可能的把 index condition 的处理从 server 层下推到存储引擎层。
存储引擎使用索引过滤不相关的数据,仅返回符合 index condition 条件的数据给 server 层。也是说数据过滤尽可能存储引擎层进行,而不是返回所有数据给 server 层,然后后再根据 where 条件进行过滤。
下推过程优化器没有使用 ICP 时
数据访问和提取的过程如下:
①:MySQL Server 发出读取数据的命令,调用存储引擎的索引读或全表表读。此处进行的是索引读。
②、③:进入存储引擎,读取索引树,在索引树上查找,把满足条件的(红色的)从表记录中读出(步骤 ④,通常有 IO)。
⑤:从存储引擎返回标识的结果。
以上,不仅要在索引行进行索引读取(通常是内存中,速度快。步骤 ③),还要进行进行步骤 ④,通常有 IO。
⑥:从存储引擎返回查找到的多条数据给 MySQL Server,MySQL Server 在 ⑦ 得到较多的元组。
⑦--⑧:依据 WHERE 子句条件进行过滤,得到满足条件的数据。
注意在 MySQL Server 层得到较多数据,然后才过滤,最终得到的是少量的、符合条件的数据。
在不支持 ICP 的系统下,索引仅仅作为 data access 使用。
优化器使用ICP时
①:MySQL Server 发出读取数据的命令,过程同图一。
②、③:进入存储引擎,读取索引树,在索引树上查找,把满足已经下推的条件的(红色的)从表记录中读出(步骤 ④,通常有 IO);
⑤:从存储引擎返回标识的结果。
此处,不仅要在索引行进行索引读取(通常是内存中,速度快。步骤 ③),还要在 ③ 这个阶段依据下推的条件进行进行判断,不满足条件的,不去读取表中的数据,直接在索引树上进行下一个索引项的判断,直到有满足条件的,才进行步骤 ④ ,这样,较没有 ICP 的方式,IO 量减少。
⑥:从存储引擎返回查找到的少量数据给 MySQL Server,MySQL Server 在 ⑦ 得到少量的数据。
因此比较图一无 ICP 的方式,返回给 MySQL Server 层的即是少量的、 符合条件的数据。