一. SpringCloud简介与微服务架构 (2)

所有的微服务都是独立的Java进程跑在独立的虚拟机上,所以服务间的通信就是IPC(inter process communication),已经有很多成熟的方案。现在基本最通用的有两种方式:

同步调用:① REST(JAX-RS,Spring Boot)② RPC(Thrift, Dubbo)

异步消息调用:(Kafka, Notify, MetaQ)

同步和异步的区别:

一般同步调用比较简单,一致性强,但是容易出调用问题,性能体验上也会差些,特别是调用层次多的时候。RESTful和RPC的比较也是一个很有意思的话题。一般REST基于HTTP,更容易实现,更容易被接受,服务端实现技术也更灵活些,各个语言都能支持,同时能跨客户端,对客户端没有特殊的要求,只要封装了HTTP的SDK就能调用,所以相对使用的广一些。RPC也有自己的优点,传输协议更高效,安全更可控,特别在一个公司内部,如果有统一个的开发规范和统一的服务框架时,他的开发效率优势更明显些。就看各自的技术积累实际条件自己的选择了。

而异步消息的方式在分布式系统中有特别广泛的应用,他既能减低调用服务之间的耦合,又能成为调用之间的缓冲,确保消息积压不会冲垮被调用方,同时能保证调用方的服务体验,继续干自己该干的活,不至于被后台性能拖慢。不过需要付出的代价是一致性的减弱,需要接受数据最终一致性;还有就是后台服务一般要 实现幂等性,因为消息发送出于性能的考虑一般会有重复(保证消息的被收到且仅收到一次对性能是很大的考验);最后就是必须引入一个独立的broker,如果公司内部没有技术积累,对broker分布式管理也是一个很大的挑战。

image-20210120001259264

如此多的服务如何实现?- 服务发现

在微服务架构中,一般每一个服务都是有多个拷贝来做负载均衡。一个服务随时可能下线也可能应对临时访问压力增加新的服务节点。服务之间如何相互感知?服务如何管理?这就是服务发现的问题了。一般有两类做法,也各有优缺点。基本都是通过zookeeper等类似技术做服务注册信息的分布式管理。当服务上线时,服务提供者将自己的服务信息注册到ZK(或类似框架),并通过心跳维持长链接,实时更新链接信息。服务调用者通过ZK寻址,根据可定制算法找到一个服务,还可以将服务信息缓存在本地以提高性能。当服务下线时,ZK会发通知给服务客户端。

客户端做服务发现:优点是架构简单,扩展灵活,只对服务注册器依赖。缺点是客户端要维护所有调用服务的地址有技术难度,一般大公司都有成熟的内部框架支持,比如Dubbo。

服务端做服务发现:优点是简单,所有服务对于前台调用方透明,一般在小公司在云服务上部署的应用采用的比较多。

image-20210120000344555

服务挂了如何解决 - 熔断机制,限流,负载均衡...

前面提到,Monolithic方式开发一个很大的风险是把所有鸡蛋放在一个篮子里,一荣俱荣一损俱损。而分布式最大的特性就是网络是不可靠的。通过微服务拆分能降低这个风险,不过如果没有特别的保障结局肯定是噩梦。所以当我们的系统是由一系列的服务调用链组成的时候,我们必须确保任一环节出问题都不至于影响整体链路。

相应的手段有很多:这些方法基本都很明确通用,比如Netflix的Hystrix:https://github.com/Netflix/Hystrix

重试机制

限流

熔断机制

负载均衡

降级(本地缓存)

image-20210120001009915

1.5 微服务的优缺点

微服务的优点:

关键点:复杂度可控,独立按需扩展,技术选型灵活,容错,可用性高

它解决了复杂性的问题。它会将一种怪异的整体应用程序分解成一组服务。虽然功能总量 不变,但应用程序已分解为可管理的块或服务。每个服务都以RPC或消息驱动的API的形式定义了一个明确的边界;Microservice架构模式实现了一个模块化水平。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wssydw.html