Linux中断处理体系结构分析(2)

1.中断处理的体系结构

   我们知道编写设备驱动程序一定要用到中断处理函数,这在驱动程序的编写中,占据很重要的一部分。在响应一个特定的中断的时候,内核会执行一个函数,该函数叫做中断处理程序(interrupt handler)或中断服务例程(interrupt service routine ,ISP).产生中断的每个设备都有一个相应的中断处理程序,中断处理程序通常不和特定的设备关联,而是和特定的中断关联的,也就是说,如果一个设备可以产生多种不同的中断,那么该就可以对应多个中断处理程序,相应的,该设备的驱动程序也就要准备多个这样的函数。在Linux内核中处理中断是分为上半部(top half),和下半部(bottom half)之分的。上半部只做有严格时限的工作,例如对接收到的中断进行应答或复位硬件,这些工作是在所有的中断被禁止的

情况下完成的,能够被允许稍后完成的工作会推迟到下半部去。要想了解上半部和下半部的机制可以阅读一下《Linux内核设计与实现》的第七章的内容。

    Linux内核将所有的中断统一编号,使用一个irq_desc结构数组来描述这些中断;每个数组项对应一个中断,也可能是一组中断,它们共用相同的中断号,里面记录了中断的名称、中断状态、中断标记(比如中断类型、是否共享中断等),并提供了中断的低层硬件访问函数(清除、屏蔽、使能中断),提供了这个中断的处理函数入口,通过它可以调用用户注册的中断处理函数。

   通过irq_desc结构数组就可以了解中断处理体系结构,irq_desc结构的数据类型include/linux/irq.h

中定义,

struct irq_desc {
    unsigned int        irq;
    struct timer_rand_state *timer_rand_state;
    unsigned int *kstat_irqs;
#ifdef CONFIG_INTR_REMAP
    struct irq_2_iommu *irq_2_iommu;
#endif
    irq_flow_handler_t    handle_irq; // 当前中断的处理函数入口

    struct irq_chip        *chip; //低层的硬件访问

    struct msi_desc        *msi_desc;
    void            *handler_data;
    void            *chip_data;
    struct irqaction    *action;    // 用户提供的中断处理函数链表

    unsigned int        status;        //IRQ状态
                ........

    const char        *name; //中断的名称

} ____cacheline_internodealigned_in_smp;

 
   handle_irq是这个或这组中断的处理函数入口。发生中断时,总入口函数asm_do_IRQ将根据中断号调用相应irq_desc数组项中handle_irq.handle_irq使用chip结构中的函数清除、屏蔽或者重新使能中断,还要调用用户在action链表中注册的中断处理函数。
   irq_chip结构类型也是在include/linux/irq.h中定义,其中的成员大多用于操作底层硬件,比如设置寄存器以屏蔽中断,使能中断,清除中断等。

struct irq_chip {
    const char    *name;
    unsigned int    (*startup)(unsigned int irq);//启动中断,如果不设置,缺省为“enable
    void        (*shutdown)(unsigned int irq);/*关闭中断,如果不设置,缺省为"disable"*/
    void        (*enable)(unsigned int irq);// 使用中断,如果不设置,缺省为"unmask"
    void        (*disable)(unsigned int irq);//禁止中断,如果不设置,缺省为“mask”
    void        (*ack)(unsigned int irq);/*响应中断,通常是清除当前中断使得可以接收下一个中断*/
    void        (*mask)(unsigned int irq); //屏蔽中断源

    void        (*mask_ack)(unsigned int irq);//屏蔽和响应中断

    void        (*unmask)(unsigned int irq);//开启中断源

    void        (*eoi)(unsigned int irq);
    ........
    const char    *typename;
};

 
irq_desc结构中的irqaction结构类型在include/linux/iterrupt.h中定义。用户注册的每个中断

处理函数用一个irqaction结构来表示,一个中断比如共享中断可以有多个处理函数,它们的irqaction结

构链接成一个链表,以action为表头。irqation结构定义如下:

struct irqaction {
    irq_handler_t handler; //用户注册的中断处理函数
    unsigned long flags; //中断标志,比如是否共享中断,电平触发还是边沿触发
    const char *name; //用户注册的中断名字
    void *dev_id; //用户传给上面的handler的参数,还可以用来区分共享中断
    struct irqaction *next; //指向下一个用户注册函数的指针
    int irq; //中断号
    struct proc_dir_entry *dir;
    irq_handler_t thread_fn;
    struct task_struct *thread;
    unsigned long thread_flags;
};

 
   irq_desc结构数组、它的成员“struct irq_chip *chip” "struct irqaction *action",这3种数据结构构成了中断处理体系的框架。下图中描述了Linxu中断处理体系结构的关系图:

Linux中断处理体系结构分析

中断处理流程如下
(1)发生中断时,CPU执行异常向量vector_irq的代码
(2)在vector_irq里面,最终会调用中断处理的总入口函数asm_do_IRQ
(3)asm_do_IRQ根据中断号调用irq_desc数组项中的handle_irq。
(4)handle_irq会使用chip成员中的函数来设置硬件,比如清除中断、禁止中断、重新使能中断等
(5)handle_irq逐个调用用户在aciton链表中注册的处理函数
   中断体系结构的初始化就是构造这些数据结构,比如irq_desc数组项中的handle_irq、chip等成员;用户注册中断时就是构造action链表;用户卸载中断时就是从action链表中去除不需要的项。

2.中断处理体系结构的初始化

init_IRQ函数被用来初始化中断处理体系结构,代码在arch/arm/kernel/irq.c中

153 void __init init_IRQ(void)
154 {
155 int irq;
156
157 for (irq = 0; irq < NR_IRQS; irq++)
158 irq_desc[irq].status |= IRQ_NOREQUEST | IRQ_NOPROBE;
159
160 init_arch_irq();
161 }

 
157~~158行 初始化irq_desc结构数组中每一项的中断状态
第160行调用架构相关的中断初始化函数。对于S3C2440开发板,这个函数就是s3c24xx_init_irq,移植machine_desc结构中的init_irq成员就指向这个函数s3c24xx_init_irq函数在arch/arm/plat-s3c24xx/irq.c中定义,它为所有中断设置了芯片相关的数据结构(irq_desc[irq].chip),设置了处理函数入口(irq_desc[irq].handle_irq)。以外部中断EINT4-EINT23为例,用来设置它们的代码如下:

void __init s3c24xx_init_irq(void)
534 {
535 unsigned long pend;
536 unsigned long last;
537 int irqno;
538 int i;
........
637 for (irqno = IRQ_EINT4; irqno <= IRQ_EINT23; irqno++) {
638 irqdbf("registering irq %d (extended s3c irq)\n", irqno);
639 set_irq_chip(irqno, &s3c_irqext_chip);
640 set_irq_handler(irqno, handle_edge_irq);
641 set_irq_flags(irqno, IRQF_VALID);

...............
655 for (irqno = IRQ_S3CUART_RX1; irqno <= IRQ_S3CUART_ERR1; irqno++) {
656 irqdbf("registering irq %d (s3c uart1 irq)\n", irqno);
657 set_irq_chip(irqno, &s3c_irq_uart1);
658 set_irq_handler(irqno, handle_level_irq);
659 set_irq_flags(irqno, IRQF_VALID);
660 }
..........
676 irqdbf("s3c2410: registered interrupt handlers\n");
677 }
678

 

在639行set_irq_chip函数的作用就是“irq_desc[irno].chip = &s3c_irqext_chip”,以后就可能通过irq_desc[irqno].chip结构中的函数指针设置这些外部中断的触发方式(电平触发,边沿触发),使能中断,禁止中断。
   在640行设置这些中断的处理函数入口为handle_edge_irq,即“irq_desc[irqno].handle_irq =handle_edge_irq”.发生中断时,handle_edge_irq函数会调用用户注册的具体处理函数; 在641行设置中断标志为“IRQF_VALID”,表示可以使用它们。init_IRQ函数执行完后,irq_desc数组项的chip,handl_irq成员都被设置        
  2.2 用户注册中断处理函数的过程
    用户驱动程序通过request_irq函数向内核注册中断处理函数,request_irq函数根据中断号找到irq_desc数组项,然后在它的action链表添加一个表项。原先的内核中requset_irq函数在kernel/irq/manage.c中定义,而现在2.6.32版本中,进行了改变,可以看这篇文章 ,这里解释了,在2.6.32内核中我们可以看到找不到了request_irq函数的实现,而是用request_threaded_irq()函数给替换了。我们可以在inclue/linux/interrupt.h中找到这个函数的原型。

110 #ifdef CONFIG_GENERIC_HARDIRQS
111 extern int __must_check
112 request_threaded_irq(unsigned int irq, irq_handler_t handler,
113 irq_handler_t thread_fn,
114 unsigned long flags, const char *name, void *dev);
115
116 static inline int __must_check
117 request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
118 const char *name, void *dev)
119 {
120 return request_threaded_irq(irq, handler, NULL, flags, name, dev);
121 }
123 extern void exit_irq_thread(void);
124 #else
126 extern int __must_check
127 request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
128 const char *name, void *dev);
136 static inline int __must_check
137 request_threaded_irq(unsigned int irq, irq_handler_t handler,
138 irq_handler_t thread_fn,
139 unsigned long flags, const char *name, void *dev)
140 {
141 return request_irq(irq, handler, flags, name, dev);
142 }
143
144 static inline void exit_irq_thread(void) { }
145 #endif

 
其实具体的实现在request_threaded_irq函数中,也是在/kernel/irq/manage.c中定义,requset_threaded_irq函数首先使用这4个参数构造一个irqaction结构,然后调用setup_irq函数将它链入链表中,

1003 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1004 irq_handler_t thread_fn, unsigned long irqflags,
                          const char *devname, void *dev_id)
.............
1056 action->handler = handler;
1057 action->thread_fn = thread_fn;
1058 action->flags = irqflags;
1059 action->name = devname;
1060 action->dev_id = dev_id;
1061
1062 chip_bus_lock(irq, desc);
1084 local_irq_restore(flags);
1085 enable_irq(irq);
...........
1088 return retval;
1089 }
1090 EXPORT_SYMBOL(request_threaded_irq);

 

setup_irq函数也是在kernel/irq.manage.c中定义,它完成如下3个主要功能
(1)将新建的irqaction结构链入irq_desc[irq]结构的action链表中,这有两种可能。
如果action链表为空,则直接链入,否则先判断新建的irqaction结构和链表中的irqaction结构所表示的中断类型是否一致,即是否都声明为"可共享的"(IRQF_SHARED)、是否都使用相同的触发方式,如果一致,则将新建的irqation结构链入
(2)设置irq_desc[irq]结构中chip成员的还没设置的指针,让它们指向一些默认函数
chip成员在init_IRQ函数初始化中断体系结构的时候已经设置了,这里只是设置其中还没设置的指针这通过irq_chip_set_defaults函数来完成,它在kernel/irq/chip.c中定义

296 void irq_chip_set_defaults(struct irq_chip *chip)
297 {
298 if (!chip->enable)
299 chip->enable = default_enable;//调用chip->unmask
300 if (!chip->disable)
301 chip->disable = default_disable;//此函数为空
302 if (!chip->startup)
303 chip->startup = default_startup;//调用chip->enable
310 if (!chip->shutdown)
311 chip->shutdown = chip->disable != default_disable ?
312 chip->disable : default_shutdown;
313 if (!chip->name)
314 chip->name = chip->typename;
315 if (!chip->end)
316 chip->end = dummy_irq_chip.end;
317 }

 

(4)启动中断
如果irq_desc[irq]结构中status成员没有被指明IRQ_NOAUTOEN(表示注册中断时不要使用中断),还要调用chip->startup或chip->enable来启动中断,所谓启动中断通常就是使用中断。一般情况下,只有那些“可以自动使能的”中断对应的irq_desc[irq].status才会被指明为IRQ_NOAUTOEN,所以,无论哪种情况,执行request_irq注册中断之后,这个中断就已经被使能了。
总结一下request_irq函数注册
(1)irq_des[irq]结构中的action链表中已经链入了用户注册的中断处理函数
(2)中断的触发方式已经被设好
(3)中断已经被使能

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wwjfdx.html