Android Binder设计与实现 – 设计篇(3)

考察一次Binder通信的全过程会发现,Binder存在于系统以下几个部分中:

· 应用程序进程:又分为Server进程和Client进程

· Binder驱动:Server和Client有不同表述形式

· 传输数据:由于Binder可以跨进程传递,需要在传输数据中予以表述

在系统不同部分,Binder实现的功能不同,表现形式也不一样的。接下来逐一探讨Binder在各部分所扮演的角色和使用的数据结构。

5.1 Binder 在应用程序中的表述

虽然Binder用到了面向对象的思想,但并不限制应用程序一定要使用面向对象的语言,无论是C语言还是C++语言都可以很容易的使用Binder 来通信。例如尽管Android主要使用java或C++,象SMgr这么重要的进程就是用C语言实现的。不过面向对象的方式表述起来更方便,所以本文假 设应用程序是用面向对象语言实现的。

Binder本质上只是一种底层通信方式,和具体服务没有关系。为了提供具体服务,Server必须提供一套接口函数以便Client通过远程访问 使用各种服务。这时通常采用Proxy设计模式:将接口函数定义在一个抽象类中,Server和Client都会以该抽象类为基类实现所有接口函数,所不 同的是Server端是真正的功能实现,而Client端是对这些函数远程调用请求的包装。如何将Binder和Proxy设计模式结合起来是应用程序实 现面向对象Binder通信的根本问题。

5.1.1 Binder 在Server端的表述 – Binder实体

做为Proxy设计模式的基础,首先定义一个抽象接口类封装Server所有功能,其中包含一系列纯虚函数留待Server和Proxy各自实现。 由于这些函数需要跨进程调用,须为其一一编号,从而Server可以根据收到的编号决定调用哪个函数。其次就要引入Binder了。Server端定义另 一个Binder抽象类处理来自Client的Binder请求数据包,其中最重要的成员是虚函数onTransact()。该函数分析收到的数据包,调 用相应的接口函数处理请求。

接下来采用继承方式以接口类和Binder抽象类为基类构建Binder在Server中的实体,实现基类里所有的虚函数,包括公共接口函数以及数 据包处理函数:onTransact()。这个函数的输入是来自Client的binder_transaction_data结构的数据包。前面提到, 该结构里有个成员code,包含这次请求的接口函数编号。onTransact()将case-by-case地解析code值,从数据包里取出函数参 数,调用接口类中相应的,已经实现的公共接口函数。函数执行完毕,如果需要返回数据就再构建一个binder_transaction_data包将返回 数据包填入其中。

那么各个Binder实体的onTransact()又是什么时候调用呢?这就需要驱动参与了。前面说过,Binder实体须要以Binde传输结 构flat_binder_object形式发送给其它进程才能建立Binder通信,而Binder实体指针就存放在该结构的handle域中。驱动根 据Binder位置数组从传输数据中获取该Binder的传输结构,为它创建位于内核中的Binder节点,将Binder实体指针记录在该节点中。如果 接下来有其它进程向该Binder发送数据,驱动会根据节点中记录的信息将Binder实体指针填入binder_transaction_data的 target.ptr中返回给接收线程。接收线程从数据包中取出该指针,reinterpret_cast成Binder抽象类并调用 onTransact()函数。由于这是个虚函数,不同的Binder实体中有各自的实现,从而可以调用到不同Binder实体提供的 onTransact()。

5.1.2 Binder 在Client端的表述 – Binder引用

做为Proxy设计模式的一部分,Client端的Binder同样要继承Server提供的公共接口类并实现公共函数。但这不是真正的实现,而是 对远程函数调用的包装:将函数参数打包,通过Binder向Server发送申请并等待返回值。为此Client端的Binder还要知道Binder实 体的相关信息,即对Binder实体的引用。该引用或是由SMgr转发过来的,对实名Binder的引用或是由另一个进程直接发送过来的,匿名 Binder的引用。

由于继承了同样的公共接口类,Client Binder提供了与Server Binder一样的函数原型,使用户感觉不出Server是运行在本地还是远端。Client Binder中,公共接口函数的实现方式是:创建一个binder_transaction_data数据包,将其对应的编码填入code域,将调用该函 数所需的参数填入data.buffer指向的缓存中,并指明数据包的目的地,那就是已经获得的对Binder实体的引用,填入数据包的 target.handle中。注意这里和Server的区别:实际上target域是个联合体,包括ptr和handle两个成员,前者用于作为响应方 的Server,指向 Binder实体对应的内存空间;后者用于作为请求方的Client,存放Binder实体的引用,告知驱动数据包将路由给哪个实体。数据包准备好后,通 过驱动接口发送出去。经过BC_TRANSACTION/BC_REPLY回合完成函数的远程调用并得到返回值。

5.2 Binder 在传输数据中的表述

Binder可以塞在数据包的有效数据中越进程边界从一个进程传递给另一个进程,这些传输中的Binder用结构 flat_binder_object表示,如下表所示:

表 6 Binder传输结构:flat_binder_object

成员   含义  
unsigned long type   表明该Binder的类型,包括以下几种:

BINDER_TYPE_BINDER:表示传递的是Binder实体,并且指向该实体的引用都是强类型;

BINDER_TYPE_WEAK_BINDER:表示传递的是Binder实体,并且指向该实体的引用都是弱类型;

BINDER_TYPE_HANDLE:表示传递的是Binder强类型的引用

BINDER_TYPE_WEAK_HANDLE:表示传递的是Binder弱类型的引用

BINDER_TYPE_FD:表示传递的是文件形式的Binder,详见下节

 
unsigned long flags   该域只对第一次传递Binder实体时有效,因为此刻驱动需要在内核中创建相应的实体节点,有些参数需要从该域取出:

第0-7位:代码中用FLAT_BINDER_FLAG_PRIORITY_MASK取得,表示处理本实体请求数据包的线程的最低优先级。当一个应 用程序提供多个实体时,可以通过该参数调整分配给各个实体的处理能力。

第8位:代码中用FLAT_BINDER_FLAG_ACCEPTS_FDS取得,置1表示该实体可以接收其它进程发过来的文件形式的 Binder。由于接收文件形式的Binder会在本进程中自动打开文件,有些Server可以用该标志禁止该功能,以防打开过多文件。

 
union {

void *binder;

signed long handle;

};

  当传递的是Binder实体时使用binder域,指向Binder实体在应用程序中的地址。

当传递的是Binder引用时使用handle域,存放Binder在进程中的引用号。

 
void *cookie;   该域只对Binder实体有效,存放与该Binder有关的附加信息。  

无论是Binder实体还是对实体的引用都从属与某个进程,所以该结构不能透明地在进程之间传输,必须有驱动的参与。例如当Server把 Binder实体传递给Client时,在发送数据中,flat_binder_object中的type是 BINDER_TYPE_BINDER,binder指向Server进程用户空间地址。如果透传给接收端将毫无用处,驱动必须对数据流中的这个 Binder做修改:将type该成BINDER_TYPE_HANDLE;为这个Binder在接收进程中创建位于内核中的引用并将引用号填入 handle中。对于发生数据流中引用类型的Binder也要做同样转换。经过处理后接收进程从数据流中取得的Binder引用才是有效的,才可以将其填 入数据包binder_transaction_data的target.handle域,向Binder实体发送请求。

这样做也是出于安全性考虑:应用程序不能随便猜测一个引用号填入target.handle中就可以向Server请求服务了,因为驱动并没有为你 在内核中创建该引用,必定会驱动被拒绝。唯有经过身份认证确认合法后,由‘权威机构’通过数据流授予你的Binder才能使用,因为这时驱动已经在内核中 为你建立了引用,交给你的引用号是合法的。

下表总结了当flat_binder_object结构穿过驱动时驱动所做的操作:

表 7 驱动对flat_binder_object的操作

Binder 类型( type 域)   在发送方的操作   在接收方的操作  
BINDER_TYPE_BINDER

BINDER_TYPE_WEAK_BINDER

  只有实体所在的进程能发送该类型的Binder。如果是第一次发送驱动将创建实体在内核中的节点,并保存binder,cookie,flag域。   如果是第一次接收该Binder则创建实体在内核中的引用;将handle域替换为新建的引用号;将type域替换为 BINDER_TYPE_(WEAK_)HANDLE  
BINDER_TYPE_HANDLE

BINDER_TYPE_WEAK_HANDLE

  获得Binder引用的进程都能发送该类型Binder。驱动根据handle域提供的引用号查找建立在内核的引用。如果找到说明引用号合法,否则 拒绝该发送请求。   如果收到的Binder实体位于接收进程中:将ptr域替换为保存在节点中的binder值;cookie替换为保存在节点中的cookie 值;type替换为BINDER_TYPE_(WEAK_)BINDER。

如果收到的Binder实体不在接收进程中:如果是第一次接收则创建实体在内核中的引用;将handle域替换为新建的引用号

 
BINDER_TYPE_FD   验证handle域中提供的打开文件号是否有效,无效则拒绝该发送请求。   在接收方创建新的打开文件号并将其与提供的打开文件描述结构绑定。  
5.2.1 文件形式的 Binder

除了通常意义上用来通信的Binder,还有一种特殊的Binder:文件Binder。这种Binder的基本思想是:将文件看成Binder实 体,进程打开的文件号看成Binder的引用。一个进程可以将它打开文件的文件号传递给另一个进程,从而另一个进程也打开了同一个文件,就象Binder 的引用在进程之间传递一样。

一个进程打开一个文件,就获得与该文件绑定的打开文件号。从Binder的角度,linux在内核创建的打开文件描述结构struct file是Binder的实体,打开文件号是该进程对该实体的引用。既然是Binder那么就可以在进程之间传递,故也可以用 flat_binder_object结构将文件Binder通过数据包发送至其它进程,只是结构中type域的值为BINDER_TYPE_FD,表明 该Binder是文件Binder。而结构中的handle域则存放文件在发送方进程中的打开文件号。我们知道打开文件号是个局限于某个进程的值,一旦跨 进程就没有意义了。这一点和Binder实体用户指针或Binder引用号是一样的,若要跨进程同样需要驱动做转换。驱动在接收Binder的进程空间创 建一个新的打开文件号,将它与已有的打开文件描述结构struct file勾连上,从此该Binder实体又多了一个引用。新建的打开文件号覆盖flat_binder_object中原来的文件号交给接收进程。接收进 程利用它可以执行read(),write()等文件操作。

传个文件为啥要这么麻烦,直接将文件名用Binder传过去,接收方用open()打开不就行了吗?其实这还是有区别的。首先对同一个打开文件共享 的层次不同:使用文件Binder打开的文件共享linux VFS中的struct file,struct dentry,struct inode结构,这意味着一个进程使用read()/write()/seek()改变了文件指针另一个进程的文件指针也会改变;而如果两个进程分别使用 文件名打开同一文件则有各自的struct file结构,从而各自独立维护文件指针,互不干扰。其次是一些特殊设备文件要求在struct file一级共享才能使用,例如android的另一个驱动ashmem,它和Binder一样也是misc设备,用以实现进程间的共享内存。一个进程打 开的ashmem文件只有通过文件Binder发送到另一个进程才能实现内存共享,这大大提高了内存共享的安全性,道理和Binder增强了IPC的安全 性是一样的。

5.3 Binder 在驱动中的表述

驱动是Binder通信的核心,系统中所有的Binder实体以及每个实体在各个进程中的引用都登记在驱动中;驱动需要记录Binder引用 ->实体之间多对一的关系;为引用找到对应的实体;在某个进程中为实体创建或查找到对应的引用;记录Binder的归属地(位于哪个进程中);通过 管理Binder的强/弱引用创建/销毁Binder实体等等。

驱动里的Binder是什么时候创建的呢?前面提到过,为了实现实名Binder的注册,系统必须创建第一只鸡 – 为SMgr创建的,注册实名Binder专用的Binder实体,负责实名Binder注册过程中的进程间通信。既然创建了实体也要有对应的引用:驱动将 所有进程中的0号引用都预留给该Binder实体,即一开始所有进程的0号引用都指注册实名Binder专用的Binder,无须特殊操作任何进程通过0 号引用都可以注册实名Binder。接下来随着应用程序通过不断地注册实名Binder,不断向SMgr索要Binder的引用,不断将Binder从一 个进程传递给另一个进程,越来越多的Binder以传输结构 – flat_binder_object的形式穿越驱动做跨进程的迁徙。由于binder_transaction_data中data.offset数组 的存在,所有流经驱动的Binder都逃不过驱动的眼睛。Binder将对每个穿越进程边界的Binder做如下操作:检查传输结构的type域,如果是 BINDER_TYPE_BINDER或BINDER_TYPE_WEAK_BINDER则创建Binder的实体;如果是 BINDER_TYPE_HANDLE或BINDER_TYPE_WEAK_HANDLE则创建Binder的引用;如果是 BINDER_TYPE_HANDLE则为进程打开文件,无须创建任何数据结构。详细过程可参考表7。随着越来越多的Binder实体或引用穿过驱动在进 程间传递,驱动会在内核里创建越来越多的节点或引用,当然这个过程对用户来说是透明的。

5.3.1 Binder 实体在驱动中的表述

驱动中的Binder实体也叫‘节点’,隶属于提供实体的进程,由struct binder_node结构来表示:

表 8 Binder节点描述结构:binder_node

成员   含义  
int debug_id;   用于调试  
struct binder_work work;   当本节点引用计数发生改变,需要通知所属进程时,通过该成员挂入所属进程的to-do队列里,唤醒所属进程执行Binder实体引用计数的修改。  
union {

struct rb_node rb_node;

struct hlist_node dead_node;

};

  每个进程都维护一棵红黑树,以Binder实体在用户空间的指针,即本结构的ptr成员为索引存放该进程所有的Binder实体。这样驱动可以根据 Binder实体在用户空间的指针很快找到其位于内核的节点。rb_node用于将本节点链入该红黑树中。

销毁节点时须将rb_node从红黑树中摘除,但如果本节点还有引用没有切断,就用dead_node将节点隔离到另一个链表中,直到通知所有进程 切断与该节点的引用后,该节点才可能被销毁。

 
struct binder_proc *proc;   本成员指向节点所属的进程,即提供该节点的进程。  
struct hlist_head refs;   本成员是队列头,所有指向本节点的引用都链接在该队列里。这些引用可能隶属于不同的进程。通过该队列可以遍历指向该节点的所有引用。  
int internal_strong_refs;   用以实现强指针的计数器:产生一个指向本节点的强引用该计数就会加1。  
int local_weak_refs;   驱动为传输中的Binder设置的弱引用计数。如果一个Binder打包在数据包中从一个进程发送到另一个进程,驱动会为该Binder增加引用计 数,直到接收进程通过BC_FREE_BUFFER通知驱动释放该数据包的数据区为止。  
int local_strong_refs;   驱动为传输中的Binder设置的强引用计数。同上。  
void __user *ptr;   指向用户空间Binder实体的指针,来自于flat_binder_object的binder成员  
void __user *cookie;   指向用户空间的附加指针,来自于flat_binder_object的cookie成员  
unsigned has_strong_ref;

unsigned pending_strong_ref;

unsigned has_weak_ref;

unsigned pending_weak_ref

  这一组标志用于控制驱动与Binder实体所在进程交互式修改引用计数  
unsigned has_async_transaction;   该成员表明该节点在to-do队列中有异步交互尚未完成。驱动将所有发送往接收端的数据包暂存在接收进程或线程开辟的to-do队列里。对于异步交 互,驱动做了适当流控:如果to-do队列里有异步交互尚待处理则该成员置1,这将导致新到的异步交互存放在本结构成员 – asynch_todo队列中,而不直接送到to-do队列里。目的是为同步交互让路,避免长时间阻塞发送端。  
unsigned accept_fds   表明节点是否同意接受文件方式的Binder,来自flat_binder_object中flags成员的 FLAT_BINDER_FLAG_ACCEPTS_FDS位。由于接收文件Binder会为进程自动打开一个文件,占用有限的文件描述符,节点可以设置 该位拒绝这种行为。  
int min_priority   设置处理Binder请求的线程的最低优先级。发送线程将数据提交给接收线程处理时,驱动会将发送线程的优先级也赋予接收线程,使得数据即使跨了进 程也能以同样优先级得到处理。不过如果发送线程优先级过低,接收线程将以预设的最小值运行。

该域的值来自于flat_binder_object中flags成员。

 
struct list_head async_todo   异步交互等待队列;用于分流发往本节点的异步交互包  

每个进程都有一棵红黑树用于存放创建好的节点,以Binder在用户空间的指针作为索引。每当在传输数据中侦测到一个代表Binder实体的 flat_binder_object,先以该结构的binder指针为索引搜索红黑树;如果没找到就创建一个新节点添加到树中。由于对于同一个进程来说 内存地址是唯一的,所以不会重复建设造成混乱。

5.3.2 Binder 引用在驱动中的表述

和实体一样,Binder的引用也是驱动根据传输数据中的flat_binder_object创建的,隶属于获得该引用的进程,用struct binder_ref结构体表示:

表 9 Binder引用描述结构:binder_ref

成员   含义  
int debug_id;   调试用  
struct rb_node rb_node_desc;   每个进程有一棵红黑树,进程所有引用以引用号(即本结构的desc域)为索引添入该树中。本成员用做链接到该树的一个节点。  
struct rb_node rb_node_node;   每个进程又有一棵红黑树,进程所有引用以节点实体在驱动中的内存地址(即本结构的node域)为所引添入该树中。本成员用做链接到该树的一个节点。  
struct hlist_node node_entry;   该域将本引用做为节点链入所指向的Binder实体结构binder_node中的refs队列  
struct binder_proc *proc;   本引用所属的进程  
struct binder_node *node;   本引用所指向的节点(Binder实体)  
uint32_t desc;   本结构的引用号  
int strong;   强引用计数  
int weak;   弱引用计数  
struct binder_ref_death *death;   应用程序向驱动发送BC_REQUEST_DEATH_NOTIFICATION或BC_CLEAR_DEATH_NOTIFICATION命令从 而当Binder实体销毁时能够收到来自驱动的提醒。该域不为空表明用户订阅了对应实体销毁的‘噩耗’。  

就象一个对象有很多指针一样,同一个Binder实体可能有很多引用,不同的是这些引用可能分布在不同的进程中。和实体一样,每个进程使用红黑树存 放所有该进程正在使用的引用。但Binder的引用可以通过两个键值索引:

· 对应实体在内核中的地址。注意这里指的是驱动创建于内核中的binder_node结构的地址,而不是Binder实体在用户进程中的地址。实体在内核中 的地址是唯一的,用做索引不会产生二义性;但实体可能来自不同用户进程,而实体在不同用户进程中的地址可能重合,不能用来做索引。驱动利用该红黑树在一个 进程中快速查找某个Binder实体所对应的引用(一个实体在一个进程中只建立一个引用)。

· 引用号。引用号是驱动为引用分配的一个32位标识,在一个进程内是唯一的,而在不同进程中可能会有同样的值,这和进程的打开文件号很类似。引用号将返回给 应用程序,可以看作Binder引用在用户进程中的句柄。除了0号引用在所有进程里都保留给SMgr,其它值由驱动在创建引用时动态分配。向Binder 发送数据包时,应用程序通过将引用号填入binder_transaction_data结构的target.handle域中表明该数据包的目的 Binder。驱动根据该引用号在红黑树中找到引用的binder_ref结构,进而通过其node域知道目标Binder实体所在的进程及其它相关信 息,实现数据包的路由。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wwjjzd.html