library(arules) #加载arules程序包
data(Groceries) #调用数据文件
frequentsets=eclat(Groceries,parameter=list(support=0.05,maxlen=10)) #求频繁项集
inspect(frequentsets[1:10]) #察看求得的频繁项集
inspect(sort(frequentsets,by="support")[1:10]) #根据支持度对求得的频繁项集排序并察看(等价于inspect(sort(frequentsets)[1:10])
rules=apriori(Groceries,parameter=list(support=0.01,confidence=0.01)) #求关联规则
summary(rules) #察看求得的关联规则之摘要
x=subset(rules,subset=rhs%in%"whole milk"&lift>=1.2) #求所需要的关联规则子集
inspect(sort(x,by="support")[1:5]) #根据支持度对求得的关联规则子集排序并察看 library(arules) #加载arules程序包
data(Groceries) #调用数据文件
frequentsets=eclat(Groceries,parameter=list(support=0.05,maxlen=10)) #求频繁项集
inspect(frequentsets[1:10]) #察看求得的频繁项集
inspect(sort(frequentsets,by="support")[1:10]) #根据支持度对求得的频繁项集排序并察看(等价于inspect(sort(frequentsets)[1:10])
rules=apriori(Groceries,parameter=list(support=0.01,confidence=0.01)) #求关联规则
summary(rules) #察看求得的关联规则之摘要
x=subset(rules,subset=rhs%in%"whole milk"&lift>=1.2) #求所需要的关联规则子集
inspect(sort(x,by="support")[1:5]) #根据支持度对求得的关联规则子集排序并察看
在R 语言中调用关联规则算法的一般命令
内容版权声明:除非注明,否则皆为本站原创文章。