Linux Kernel代码分段分析尝试(2)

#define pure_initcall(fn)  __define_initcall("0",fn,0)
#define core_initcall(fn)  __define_initcall("1",fn,1)
#define core_initcall_sync(fn)  __define_initcall("1s",fn,1s)
#define postcore_initcall(fn)  __define_initcall("2",fn,2)
#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)
#define arch_initcall(fn)  __define_initcall("3",fn,3)
#define arch_initcall_sync(fn)  __define_initcall("3s",fn,3s)
#define subsys_initcall(fn)  __define_initcall("4",fn,4)
#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)
#define fs_initcall(fn)   __define_initcall("5",fn,5)
#define fs_initcall_sync(fn)  __define_initcall("5s",fn,5s)
#define rootfs_initcall(fn)  __define_initcall("rootfs",fn,rootfs)
#define device_initcall(fn)  __define_initcall("6",fn,6)
#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)
#define late_initcall(fn)  __define_initcall("7",fn,7)
#define late_initcall_sync(fn)  __define_initcall("7s",fn,7s)

这些宏定义出来是为了方便的使用__define_initcall宏定义的,上面每条宏第一次使用时都会产生一个新的输入段。

接下来还有一条

#define __initcall(fn) device_initcall(fn)
这一条其实只是定义了另一个别名,即平常使用的__initcall其实就是这儿的device_initcall,用它定义的函数指定位于段.initcall6.init中。

C. __setup宏的来源及使用

__setup这条宏在Linux Kernel中使用最多的地方就是定义处理Kernel启动参数的函数及数据结构,请看下面的宏定义:

#define __setup_param(str, unique_id, fn, early)   \
 static char __setup_str_##unique_id[] __initdata __aligned(1) = str; \
 static struct obs_kernel_param __setup_##unique_id \
  __used __section(.init.setup)   \
  __attribute__((aligned((sizeof(long))))) \
  = { __setup_str_##unique_id, fn, early }


#define __setup(str, fn)     \
 __setup_param(str, fn, fn, 0)

使用Kernel中的例子分析一下这两条定义:

__setup("root=",root_dev_setup);

这条语句出现在init/do_mounts.c中,其作用是处理Kernel启动时的像root=/dev/mtdblock3之类的参数的。

分解一下这条语句,首先变为:

__setup_param("root=",root_dev_setup,root_dev_setup,0);

继续分解,将得到下面这段代吗:

static char __setup_str_root_dev_setup_id[] __initdata __aligned(1) = "root=";
static struct obs_kernel_param __setup_root_dev_setup_id
  __used __section(.init.setup)
  __attribute__((aligned((sizeof(long)))))
  = { __setup_str_root_dev_setup_id, root_dev_setup, 0 };


这段代码定义了两个变量:字符数组变量__setup_str_root_dev_setup_id,其初始化内容为"root=",由于该变量用__initdata修饰,它将被放入.init.data输入段;另一变量是结构变量__setup_root_dev_setup_id,其类型为struct obs_kernel_param, 该变理被放入输入段.init.setup中。结构struct struct obs_kernel_param也在该文件中定义如下:

struct obs_kernel_param {
 const char *str;
 int (*setup_func)(char *);
 int early;
};

变量__setup_root_dev_setup_id的三个成员分别被初始化为:

__setup_str_root_dev_setup_id --> 前面定义的字符数组变量,初始内容为"root="。

root_dev_setup --> 通过宏传过来的处理函数。

0 -->常量0,该成员的作用以后分析。

现在不难想像内核启动时怎么处理启动参数的了:通过__setup宏定义obs_kernel_param结构变量都被放入.init.setup段中,这样一来实际是使.init.setup段变成一张表,Kernel在处理每一个启动参数时,都会来查找这张表,与每一个数据项中的成员str进行比较,如果完全相同,就会调用该数据项的函数指针成员setup_func所指向的函数(该函数是在使用__setup宏定义该变量时传入的函数参数),并将启动参数如root=后面的内容传给该处理函数。

内容版权声明:除非注明,否则皆为本站原创文章。

转载注明出处:https://www.heiqu.com/wzygwd.html